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Abstract 

Mathematics has always been the mother of sciences. The main reasons behind this 

are the broadness of mathematics and its compelling ability to translate theory into 

laws and algorithms to help us understand the universe better. The discovery of 

imaginary numbers was a critical moment in the history of mathematics, extending 

its horizon by solving undefinable polynomials with such a revolutionary idea. This 

paper aims to clear the common misconception about the existence of a finite 

number of numerical systems, explain their applications, and extend basic 

algebraic properties to conclude their origin. The focus of this paper is on the 

abstract mathematical approach to higher-dimensional complex systems, or hyper-

complex number systems, of Quaternions and Octonions, discussing the historical 

background of these systems, the related fundamental algebraic concepts, their 

construction, properties, operations, and finally their real-life applications. Hyper-

complex number systems are not only beneficial in computer science and 

theoretical physics but also groundbreaking within the fields of mathematics. 

Accordingly, this paper summarizes the findings throughout the history of hyper-

complex numbers and demonstrates their ability to be applied in physics, quantum 

mechanics, computer graphics, and more. 

 

I. Introduction 

Hypercomplex numbers, one of the most significant 

contributions to the field of mathematics, are a 

generalization of complex numbers and extensions to 

the widely known two-dimensional complex systems 

[1]. The development of hypercomplex numbers had 

a long accumulative base of algebraic concepts that 

mathematicians have built throughout the centuries, 

from Ancient Greek mathematics that introduced the 

fundamental ideas of imaginary numbers in the 

sixteenth century [2]. The geometrical representation 

of the complex plane that consists of a real axis and 

an imaginary axis was introduced by Carl Friedrich 

Gauss, providing the ability to express complex 

numbers as ordered pairs. After multiple trials to 

extend the two-dimensional complex system to 

higher dimensions aiming to proceed with modeling 

three-dimensional rotations [3], Irish Mathematician 

William R. Hamilton constructed a four-dimensional 

complex system that represents numbers on the form 

[3]: 



 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘    (1.1) 

He named these sets the Quaternions – a group of 

four things in Latin – the first hypercomplex numbers 

[4], [3]. 

The new number system introduced by Hamilton was 

a crucial transition in the world of algebra and 

correspondingly in the world of mathematics in the 

nineteenth century alongside non-Euclidian 

geometry since the Quaternion number system broke 

the traditional rules of vector algebra. For instance, 

quaternions do not have the property of 

commutativity under multiplication [3]. 

𝑖𝑗 =  −𝑗𝑖    (1.2) 

Thus, this discovery has opened new windows in 

algebra and vector analysis. 

A normed division algebra is an algebra A and a 

vector space with ║ab║= ║a║║b║ [7]. Hamilton's 

discovery is now considered the third of four known 

normed division algebras: Real Numbers ℝ, 

Complex Numbers ℂ, Quaternions ℍ, and Octonions 

𝕆. Octonions, the fourth normed division algebra, 

was discovered after quaternions by a colleague of 

William R. Hamilton named John T. Graves. Like 

quaternions, Octonions are eight–dimensional 

number systems that form a new non-associative and 

non-commutative algebra [7]. 

Hypercomplex numbers have shown their 

importance in various fields of theoretical physics 

and engineering, such as the compelling 

contributions of quaternion algebra in face 

recognition and robot kinematics. Additionally, 

quaternions led to forming the basics of the modern 

theory of relativity [8]. Accordingly, the broad topic 

of hypercomplex number systems is worthy of 

investigation throughout this paper due to its 

significant additions to modern technology and its 

beneficial connections to other branches of 

mathematics. 

II. Groundwork: Algebraic Concepts 

i.  Elementary Definitions: 

To set off the journey of the hyper-complex numbers, 

it is essential to construct some elementary 

definitions. According to the elementary algebra the 

real numbers ℝ is the set of all real values and they 

are represented as a one-dimensional line. The 

complex numbers ℂ were formulated depending on 

the i or in simple terms the imaginary number [9, 10, 

11]. 

𝑖 =  √−1     (2.1) 

The complex numbers are two-dimensional numbers 

and are in the form of 

𝑧 = 𝑎 + 𝑏𝑖     (2.2) 

Were a, b ∈ ℝ. Each complex number consists of a 

real part “a” and imaginary part “bi” [9, 10, 11]. 

ii.  Abstract Definitions: 

After dealing with some elementary high school 

concepts, it is time to introduce the required 

abstract concepts to start our journey. While 

dealing with the hyper-complex numbers, vector 

spaces will be finite-dimensional modules of over 

ℝ [7, 13, 14, 15, 16]. Vector space is a set V whose 

elements are called “Vectors,” generalizing the 

concept, vector spaces are “commutative groups” 

under addition. Nevertheless, vector spaces are 

even further than commutative groups. Vector 
spaces can be scaled [13, 14, 15, 16]. 

�⃑� = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛) & 𝑐 ∈ ℝ     (2.3) 

𝑐 ∙ �⃑� = (𝑐 ∙ 𝑣1, 𝑐 ∙ 𝑣2, 𝑐 ∙ 𝑣3, … , 𝑐 ∙ 𝑣𝑛)     (2.4) 

“c” is called a scalar. Scalars are considered as fields 

F. Thus, 𝑣 ∈ 𝑉 is a vector and 𝑓 ∈ 𝐹 is a scalar → 

𝑓 ∙ 𝑣 ∈ 𝑉 (a “scaled vector”) [14, 15, 16]. 

An algebra A will be a vector space that is equipped 

with a bilinear map (a function combining elements 

of two vector spaces to yield an element of a third 

vector space), 𝑚: 𝐴 × 𝐴 → 𝐴, this property is called 

“multiplication” that is abbreviated as m [7, 13, 16, 

17]. There is an element 1 ∈ 𝐴 such that 𝑚(1, 𝑎) =



 

𝑚(𝑎, 1) = 𝑎. The operation called multiplication can 

be abbreviated as 𝑚(1, 𝑎) = 𝑎𝑏 [7, 14]. Since we are 

dealing with abstract concepts in algebra, we do not 

assume that our algebras are associative. In algebra 

A if every non-zero element has an inverse and if the 

operations of left and right multiplication by any 

non-zero element are reversible, then A is called a 

skew field, which is also called a division algebra 

ring when A is finite-dimensional over k [7, 13, 14, 

16]. 

A normed division algebra is also an algebra A and a 

normed vector space that has ‖𝑎𝑏‖ = ‖𝑎‖‖𝑏‖. 
Therefore, A is a division algebra. We must say that 

algebra A has multiplicative inverses, such that for 

every non-zero 𝑎 ∈ 𝐴 exists 𝑎−1 ∈ 𝐴 which satisfies 

𝑎𝑎−1 = 𝑎−1𝑎 = 1 ∀ 𝐴 An associative algebra has 

multiplicative inverses ⟺ it is a division algebra [7, 

14, 16]. 

The associativity of an Algebra can be ranked to 

three levels of associativity. An algebra A is power-

associative if the subalgebra created by any one 

element is associative [7, 18, 21]. 

𝑎(𝑎(𝑎𝑎)) = (𝑎(𝑎𝑎))𝑎 = (𝑎𝑎)(𝑎𝑎)     (2.5) 

It is alternative if the subalgebra generated by any 

two elements is associative [7, 19, 20].  

𝑎(𝑎𝑏) = 𝑏(𝑎𝑎) = (𝑏𝑎)𝑎 = (𝑎𝑎)𝑏     (2.6) 

In conclusion, if the subalgebra generated by any 

three elements is associative, the algebra is 

associative [7], [17], [1]. 

𝑐(𝑎𝑏) = (𝑐𝑎)𝑏 = 𝑎(𝑏𝑐)     (2.7) 

Any algebra has a trilinear map in form of 

𝑚: 𝐴 × 𝐴 × 𝐴 → 𝐴. This trilinear map is called the 

associator. The associator is in the form of 

(𝑎, 𝑏, 𝑐) = (𝑎𝑏)𝑐 − 𝑎(𝑏𝑐).  The associator is a 

formula that measures the failure of associativity like 

the commutator (𝑎, 𝑏) = 𝑎𝑏 − 𝑏𝑎  that measure the 

failure of commutativity. Hence, we can conclude 

that if (𝑎, 𝑏, 𝑐) = 0, then the algebra is associative 

[7, 17]. 

 

Theorem 1: The Real numbers ℝ, the complex 

numbers ℂ, the quaternions ℍ, and the octonions 

𝕆  are the only normed division algebras. 

Moreover, The Real numbers ℝ , the complex 

numbers ℂ, the quaternions ℍ, and the octonions 

𝕆  are the only alternative division algebras. 

Additionally, all division algebras have dimension 

1, 2, 4, or 8. 

 

The previous theorem was likely a combination of 

three theorems to relate and generalize the properties 

of the Real numbers ℝ, the complex numbers ℂ, the 

quaternions ℍ, and the octonions 𝕆. The concept of 

the ℝ, ℂ, ℍ, and 𝕆 being the only normed division 

algebras was discovered by Hurwitz in 1898 [7, 22]. 

The concept developed over the years till the year 

1930, when Zorn came up with his theorem that the 

ℝ, ℂ, ℍ, and 𝕆 are also the only alternative division 

algebras [7, 20]. After that, Kervaire [7, 23] and 

Bott–Milnor [7, 24] have proved that all the division 

algebras have 1, 2, 4, or 8 dimensions independently. 

 

III. Historical Exploration Through Higher-

dimensional Complex Numbers 

The ancient Greeks claimed to be the first "true" 

mathematicians to think of numbers as quantities for 

measurement, not as something abstract. 

Accordingly, Mathematics back then was best 

described as 'The Science of Quantities": Lengths, 

areas, volumes, etc. [25]. Nevertheless, this idea did 

not hold true for long. The Pythagorean theorem that 

became widely known by the fifth century BCE led 

to the unveiling of the existence of irrational 

numbers, as it was found around 430 BCE that the 

lengths of the diagonals of the squares were not 

expressible as finite portions of the unit (i.e., the 

square root of two is irrational) [26]. Henceforth, the 

realm of mathematics has been expanding abstractly, 

from discovering the negative numbers in China [27] 

to the introduction of the idea of the number zero and 

the production of a new algebra in the Islamic world 



 

by mathematician Muhammed ibn Musa al-

Khwarizmi (780-850) [28], and to the discovery of 

imaginary numbers in the sixteenth century [29].  

i.  The History of Complex Numbers 

A cubic equation associated with a problem on 

Arithmetica by Diophantus (AD 200-AD 284) was 

as follows: 

𝑥3 + 𝑥 = 4𝑥2 + 4     (3.1) 

It was noy known how the solution was determined 

to be 4, but it was expected that Diophantus 

simplified the equation to the form: 

𝑥(𝑥2 + 1) = 4(𝑥2 + 1)     (3.2) 

The value of x as 4 can satisfy this equation, but the 

solutions to similar special cubic remained a 

questionable manner. Although Fra Luca Pacioli 

(1447-1517) stated in his Summa de Arithmetica, 

Geometria, Proportioni, et Proportionalita that 

there's no solution for such cubic. several 

mathematicians, especially Italian scholars, 

nevertheless, insisted on making attempts to find a 

solution [2]. Scipione del Ferro (1465-1526), 

between 1500 and 1515, found an algebraic method 

to solve cubic equations of the form: 

𝑥3 + 𝑐𝑥 = 𝑑     (3.3) 

Del Ferro kept his method a secret, but he gave it to 

his student Antonio Maria Fiore (First half of the 

sixteenth century) prior to his death. Despite the fact 

that he didn't publish the solution, mathematician 

Niccolo Tartaglia (1500-1557) claimed to find a 

solution for the cubic 

𝑥3 + 𝑏𝑥2 = 𝑑     (3.4) 

Consequently, Fiore challenged him in a thirty-

problem contest featuring different cubic cases. 

Tartaglia won, discovering the solution in 1535 [30]. 

Girolamo Cardano (1501-1576), who heard of the 

contest and Tartaglia's solution, wanted to add the 

key, under the name of Tartaglia, to the new textbook 

he was working on. After accepting Cardano's 

invitation to Milan, Tartaglia released his solution to 

Cardano under the oath of not publishing it. Later, 

Cardano discovered that the breakthrough of finding 

the cubic formula was Del Ferro's work in the first 

place. Accordingly, he gave himself the right to 

break his oath with Tartaglia and publish the solution 

to the cubic in his Ars Magna (The Great Art) in 1545 

[31].  

Cardano's Ars Magna featured one case of a cubic 

equation where 5 + √−15  and 5 − √−15  were 

solutions to the quadratic 𝑥(10 − 𝑥) = 40 . He 

described the square root of a negative number as 

"mental torture" and proceeded with multiplying 

both solutions to get 25 − (−15), which is equal to 

40, solving the equation. In 1572, Rafael Bombelli 

(1526-1572) was the first mathematician accepting 

the existence of this "mental torture" (i.e., imaginary 

numbers) and concluded in his Algebra that real 

numbers can be originated from imaginary numbers 

[32].  

The development of this controversial idea has gone 

through many stages ever since. For instance, René 

Descartes (1596-1650) came up with the term 

"imaginary," providing further geometrical 

explanations that the imaginary slope i is 
0

0
 , which is 

indeterminant, making it impossible to form a 

geometrical construction of imaginary numbers [33]. 

As the series of mathematicians who tried to 

investigate this idea continued their work, it's worthy 

of note that Leonhard Euler (1707-1783) introduced 

the symbol i with a value of √−1 [34]. Moreover, he 

showed that complex roots occur in conjugate pairs: 

if a polynomial has a root of 𝑎 + 𝑏√−1, another root 

𝑎 − 𝑏√−1 must exist [35].  

The geometrical representation of Complex numbers 

on the form 𝑎𝑥 + 𝑏𝑖  that we know today as "The 

Complex Plane" is accredited to Carl Friedrich Gauss 

(1777-1855) in the nineteenth century, and hence the 

complex plane is referred to as the "Gaussian Plane" 

in his honor, and the term "Complex" is also his. 



 

Thanks to Gauss, the concept of imaginary numbers 

became widely accepted by mathematicians, after a 

long history of calling them "impossible" and 

"intolerable" [36]. 

ii.  The History of Quaternions 

The leading character of this section, William Rowan 

Hamilton (1805-1865), was able to construct 

complex numbers from real numbers, 

complementing the work of fellow mathematicians, 

namely Augustus De Morgan (1806-1871) and 

George Peacock (1791-1858), who aimed for 

justifying the use of harmful and complex numbers. 

Hamilton studied the operations of complex numbers 

in the two-dimensional plane and the geometrical 

interpretations of these operations. As a physicist, he 

knew how necessary it is in physics to involve 

problems in three-dimensional spaces. He suggested 

that it must be possible to develop a system of such 

operations in three dimensions and even n 

dimensions [37]. Accordingly, Hamilton was 

looking for numbers that hold for the following 

properties:   

Proposition 1: 

 1. Associativity holds for multiplication and division. 

2. Commutativity holds for addition and multiplication. 

3. It is distributive. 

4. Division is unambiguous  

5. Numbers obey the law of moduli; if (𝒂𝟏, 𝒂𝟐 , 𝒂𝟑) 

(𝒃𝟏, 𝒃𝟐, 𝒃𝟑) = (𝒄𝟏, 𝒄𝟐, 𝒄𝟑), then (𝒂𝟏
𝟐, 𝒂𝟐

𝟐, 𝒂𝟑
𝟐) (𝒃𝟏

𝟐, 𝒃𝟐
𝟐, 𝒃𝟑

𝟐) = 

(𝒄𝟏
𝟐, 𝒄𝟐

𝟐, 𝒄𝟑
𝟐) 

The triplets which Hamilton tried to construct were 

of the form: 

𝑎 + 𝑏𝑖 + 𝑐𝑗     (3.5) 

where j is the new imaginary unit, 𝑗2 = −1, and the 

plane consisted of three mutually perpendicular axes: 

the real axis, the i-axis, and the j-axis. The significant 

problem he faced was multiplyings his triplets. In his 

letter to John T. Graves (1806-1870), whose 

enthusiasm encouraged Hamilton to work on the 

theory of triplets, Hamilton discussed this problem 

stating that if two of his triplets, 𝑎 + 𝑏𝑖 + 𝑐𝑗 and 𝑥 +

𝑦𝑖 + 𝑧𝑗, the product is supposed to equal: 

𝑎𝑥 −  𝑏𝑦 −  𝑐𝑧 +  𝑖(𝑎𝑦 +  𝑏𝑥)  +  𝑗(𝑎𝑧 +  𝑐𝑥)  +
 𝑖𝑗(𝑏𝑧 +  𝑐𝑦)     (3.6) 

The problem arose from ij: if multiplying by i is 

geometrically a rotation about the j – axis in the 3 – 

dimensional plane, then ij is just the same as j – 

rotating about itself and vice-versa for multiplying 

by j, and both lead nowhere. Throughout his attempts 

to find a solution, he assumed that ij=1 or ij=-1 so 

that the square of ij will be equal to 1, but neither of 

this assumption held true for the law of moduli. He 

cared about his numbers to hold true for the law of 

moduli that he didn't mind neglecting the axioms of 

associativity and commutativity in the field.  By 

assuming that 𝑖𝑗 = 0, the product seems to hold true 

for the law of moduli, but the product of ij itself is in 

violation of the rule since the modulus of both i and 

j is 1 instead of 0. The same suppression of the term 

can be obtained by assuming that the 𝑗𝑖 = −𝑖𝑗 and 

that 𝑗𝑖 = 𝑘 , −𝑖𝑗 = −𝑘 . By multiplying the 

previously mentioned  𝑎 + 𝑏𝑖 + 𝑐𝑗 and 𝑥 + 𝑦𝑖 + 𝑧𝑗 , 
the result will be as follows: 

𝑎𝑥 −  2𝑏 −  2𝑐 +  𝑖(𝑎 +  𝑥)𝑏 +  𝑗(𝑎 +  𝑥)𝑐 +
 𝑘(𝑏𝑐 −  𝑏𝑐)     (3.7) 

This results in the suppression of the coefficient k as 

desired and still finds the product-point. Hamilton 

then found that adding a fourth dimension to his 

triplets plane will solve the algebraic problem in 

multiplication, adding a new imaginary unit k equal 

to the product of i and j, where 

{
𝑖2 = 𝑗2 = 𝑘2 = −1   ,    𝑗𝑘 = −𝑘𝑗 = 𝑖
𝑖𝑗 = −𝑗𝑖 = 𝑘       ,       𝑘𝑖 = −𝑖𝑘 = 𝑗

     (3.8) 

The new extended complex system lost the axiom 

of commutativity, as it was mentioned that 𝑗𝑖 =

−𝑖𝑗. Hamilton spent 13 years from 1830 to 1843 

trying to figure this problem out, and finally wrote 

the preceeding attempts and his final conclusions on 



 

October 16th 1843, to Graves, introducing his new 

theory of quadruplets or Quaternions: Numbers on 

the form  

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘     (3.9) 

Where a, b, c, and d are real numbers and i, j, and k 

are imaginary units, with the fundamental formula 

for multiplication [25, 37, 38, 39]: 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1     (3.10) 

iii.  The History of Octonions 

"If with your alchemy you can make three pounds of 

gold, why should you stop there?” asked John T. 

Graves in a letter in which he was replying to 

Hamilton, who happened to be his dear friend from 

college, congratulating him on the birth of his 

brilliant new idea of quadruplets. On December 26th 

of the same year, Graves wrote to his friend about an 

eight-dimensional norm division algebra, which he 

named "Octaves." Hamilton did not publish his 

friend’s work at the time. Consequently, young 

British mathematician Arthur Cayley (1821-1895), 

who showed his interest in Hamilton's theory of 

quaternions since the announcement of their 

existence, published a paper that included the same 

idea of Grave's octonions in March 1845, and they 

became known as "The Cayley Numbers” [7, 39, 40, 

41]. 

IV. Constructing The Hyper – Complex 

Numbers 

i.  Quaternions: 

Since we constructed the complex numbers 𝑧 = 𝑎 +

𝑏𝑖 in a form of “duel or double” system. We likely 

are going to consider the form:  

𝑧 = 𝑎 + 𝑏𝑖 + 𝑐𝑗     (4.1) 

Where 𝑎, 𝑏, 𝑐 𝜖 ℝ and i and j are certain symbols [9]. 

It is noticeable from the complex numbers that we 

could adopt the following addition rule: 

(𝑎1 + 𝑏1𝑖 + 𝑐1𝑗) + (𝑎2 + 𝑏2𝑖 + 𝑐2𝑗) = (𝑎1 + 𝑎2) +
(𝑏1+𝑏2)𝑖 + (𝑐1 + 𝑐2)𝑗     (4.2) 

Thinking about the rule of multiplication will guide 

us to a ground-breaking conclusion. Let’s start with 

a simple example to build the foundation of our 

work. 

(𝑎 + 0𝑖 + 0𝑗)(𝑏 + 0𝑖 + 0𝑗) = 𝑎𝑏 + 0𝑖 + 0𝑗     (4.3) 

Which states that the multiplication for number 

under ℝ holds [9]. This rule implies that: 

1. the product of the number 𝑘 = 𝑘 + 0𝑖 + 0𝑗 
and by a number 𝑧 = 𝑎 + 𝑏𝑖 + 𝑐𝑗  must 

equals 𝑘𝑧 = 𝑘𝑎 + 𝑘𝑏𝑖 + 𝑘𝑐𝑗 

2. The equality holds for some numbers 𝑧1, 𝑧2 
and some arbitrary real numbers 𝑎, 𝑏  as 

follows: 

(𝑎𝑧1)(𝑏𝑧2) = (𝑎𝑏)(𝑧1𝑧2)     (4.4) 

Furthermore, the laws of distribution, 

commutativity, and associativity [9]. Nonetheless, 

the satisfaction of these laws does not imply the 

probability of having unrestricted division system for 

the whole system [9]. As example, we cannot divide 

1 by i as illustrated in the following equation: 

(0 + 1𝑖 + 0𝑗)𝑥 = 1 + 0𝑖 + 0𝑗     (4.5) 

The previous equation has no solution. This idea is 

not a random coincidence. There is a possibility to 

show that the previous equation satisfies the 

multiplication rules. Even though it is impossible to 

make a division system out of the number 𝑧 = 𝑎 +
𝑏𝑖 + 𝑐𝑗 [9].  

That is a major conclusion that led the Irish scientist 

William Rowan Hamilton in the year 1843 to solve 

the problem of the inability to create a division 

system by introducing the quaternions [9, 18, 19]. 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘     (4.6) 

The set of the quaternions can be written in the 

following form [28]: 

ℍ = {𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}     (4.7) 



 

The quaternions are categorized as an associative 

algebra with 1 as the multiplicative unit [45]. 

ii.  Octonions 

The octonions were discovered by the Irish 

mathematician John T. Graves, a friend of William 

Rowan Hamilton in the year 1843 in order to 

generalize the study of quaternions and extend its 

ideas [44]. To construct the octonions, we would 

likely use John C. Baez [7] method to construct them. 

We will conduct the construction of octonions by 

showing their multiplication table. The octonions are 

a division algebra with an 8-dimensional algebra that 

have 8 bases 1, 𝑒1, 𝑒2,𝑒3,𝑒4, 𝑒5,  𝑒6,  𝑒7  [7]. Their 

multiplication is described by a multiplication table, 

which elucidate the product of multiplying the ith 

row by the jth column. The following table 1 

illustrates the product of all permutations of an 

octonion’s 8 factors [7, 44]: 

* 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 
𝑒0 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 

𝑒1 𝑒1 −1 𝑒4 𝑒7 −𝑒2 𝑒6 −𝑒5 −𝑒3 

𝑒2 𝑒2 −𝑒4 −1 𝑒5 𝑒1 −𝑒3 𝑒7 −𝑒6 

𝑒3 𝑒3 −𝑒7 −𝑒5 −1 𝑒6 𝑒2 −𝑒4 𝑒1 

𝑒4 𝑒4 𝑒2 −𝑒1 −𝑒6 −1 𝑒7 𝑒3 −𝑒5 

𝑒5 𝑒5 −𝑒6 𝑒3 −𝑒2 −𝑒7 −1 𝑒1 𝑒4 

𝑒6 𝑒6 𝑒5 −𝑒7 𝑒4 −𝑒3 −𝑒1 −1 𝑒2 

𝑒7 𝑒7 𝑒3 𝑒6 −𝑒1 𝑒5 −𝑒4 −𝑒2 −1 

Table 1 : Multiplication table of octonions 

We deduce from the previous table that [7]: 

• 𝑒1, … , 𝑒7 is a root of -1 

• 𝑒𝑖 and 𝑒𝑗 are anticommute when 𝑖 ≠ 𝑗 

These major conclusions will help us to define the 

octonions. Octonions are a generalization of the 

quaternions to a higher dimensional lever, where the 

octonions are in the form of [44, 45]: 

𝑎 = 𝑎0𝑒0 + 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4 + 𝑎5𝑒5
+ 𝑎6𝑒6 + 𝑎7𝑒7 = 

(𝑎0,  𝑎1, 𝑎2,  𝑎3,  𝑎4,  𝑎5,  𝑎6,  𝑎7) = (𝑎0, 𝑎 )     (4.8) 

Where 𝑎 ∈ ℝ. Therefore, the set of the octonions can 

be written in the form [44, 45]: 

𝕆 = {𝑎0 +∑𝑎𝑖𝑒𝑖

7

𝑖=1

: 𝑎1, … , 𝑎7 ∈ ℝ} 

(4.9) 

The octonions are categorized as a non-associative 

algebra with 1 as the multiplicative unit [45]. 

V.  Algebraic Operations, Multiplications 

Diagrams, and Mathematical Definitions 

i.  Quaternions 

The quaternions have a basic addition rule, similar 

to the dual system of complex numbers [9, 42, 44]: 

(𝑎1 + 𝑏1𝑖 + 𝑐1𝑗 + 𝑑1𝑘) + (𝑎2 + 𝑏2𝑖 + 𝑐2𝑗 + 𝑑2𝑘) 

= (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝑖 + (𝑐1 + 𝑐2)𝑗 + (𝑑1 + 𝑑2)𝑘     

(5.1) 

Despite that the quaternions have a basic addition 

rule, they have a unique multiplication rule. To 

determine the multiplication algorithm, we need to 

know a way to multiply i, j, and k using the following 

diagram 1 represents the multiplication diagram for 

quaternions roots [7, 9]: 

 

 

 

 

 

Given this time that [7, 9]: 

𝑖2 = −1,   𝑗2 = −1,   𝑘2 = −1,   𝑖𝑗𝑘 = −1      (5.2) 

𝑖𝑗 = 𝑘,  𝑗𝑘 = 𝑖,  𝑘𝑖 = 𝑗     (5.3) 

 i 

k 

j 

Figure 1: The multiplication diagram for the quaternions 



 

𝑗𝑖 = −𝑘,  𝑖𝑘 = −𝑗,  𝑘𝑗 = −𝑖     (5.4) 

The previous diagram is the same as a multiplication 

table, where the three components of the number are 

arranged clockwise around the circle. The product of 

two components results in the third component or the 

negative component according to the direction of the 

multiplication [7, 9, 46]. 

The rules of multiplication are called Hamilton’s 

Rules. The set of quaternions was denoted by ℍ in 

honor of Hamilton’s numbers discovery. 

The following figure 2, represents the orthogonal 

state of a quaternions and it can be illustrated 

mathematically through the Hamilton’s Rules [44, 

46]: 

 

 

 

 

 

 

 

 

 

 

After introducing the multiplication diagram for the 

quaternions, we can multiply two arbitrary 

quaternions. Thus, Let 

𝑞1 = (𝑎1 + 𝑏1𝑖 + 𝑐1𝑗 + 𝑑1𝑘)     (5.5) 

𝑞2 = (𝑎2 + 𝑏2𝑖 + 𝑐2𝑗 + 𝑑2𝑘)     (5.6) 

By using the multiplication diagram [9, 44]: 

 𝑞1𝑞2 = 𝑎1𝑎2 + 𝑎1(𝑏1𝑖) + 𝑎1(𝑐2𝑗) + 𝑎1(𝑑2𝑘) +
(𝑏1𝑖)𝑎2 + (𝑏1𝑖)(𝑏2𝑖) + (𝑏1𝑖)(𝑐2𝑗) + (𝑏1𝑖)(𝑑2𝑘) +
(𝑐1𝑗)𝑎2 + (𝑐1𝑗)(𝑏2𝑖) + (𝑐1𝑗)(𝑐2𝑗) + (𝑐1𝑗)(𝑑2𝑘) +
(𝑑1𝑘)𝑎2 + (𝑑1𝑘)(𝑏2𝑖) + (𝑑1𝑘)(𝑐2𝑗) + (𝑑1𝑘)(𝑑2𝑘) 

(5.7) 

In spite the non-commutative nature of the 

quaternions, dealing with them is still possible since 

they are considered associative [9, 44]. 

(𝑞1𝑞2)𝑞3 = 𝑞1(𝑞2𝑞3)     (5.8) 

After clearing the definitions, operations, and 

properties of quaternions, we are ready to learn more 

about new forms of a quaternion that most of us 

know. The conjugate of a quaternion is denoted as �̅�, 

while the absolute of a quaternion or the magnitude 

is denoted as |𝑞| [9]. 

�̅� = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘     (5.9) 

|𝑞| = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2     (5.10) 

From these equalities, we can conclude the 

following product [9]: 

𝑞 ∙ �̅� = |𝑞|     (5.11) 

ii. Octonions 

The addition operation of two octonions is identical 

to the complex numbers and the quaternions [7, 44, 

46]. Thus, let 𝑎, 𝑎′ ∈ 𝕆 

𝑎 + 𝑎′ = (𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝑒1 + (𝑐 + 𝑐
′)𝑒2 + (𝑑 + 𝑑

′)𝑒3 +
(𝑒 + 𝑒′)𝑒4 + (𝑓 + 𝑓

′)𝑒5 + (𝑔 + 𝑔
′)𝑒6 + (ℎ + ℎ′)𝑒7     (5.12) 

The octonions are ridiculously huge to deal with. 

Similar to the quaternions, the octonions had a 

multiplication table that can be translated into a 

diagram. In order to conduct the process of 

multiplying octonions, we need to calculate all the 

possible products out of any permutation out of the 

{ 𝑒1, 𝑒2,𝑒3,𝑒4, 𝑒5,  𝑒6,  𝑒7} [7, 44]. 

We are going to rely on a well-known structure in 

the graph theory called the Fano plane [7, 9, 44]. 

The Fano plan is an apparatus with 7 points and 7 

lines. The “lines” are the sides of the triangle, its 

altitudes, and the circle containing all the midpoints 

of the sides. Each pair of distinct points lies on a 

Figure 2 : A quaternion in an orthogonal state 
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unique line. Each line contains three points. The 

following figure 3 illustrates the Fano plane used to 

multiple octonion factors [7]: 

 

 

 

 

 

 

 

 

  

If 𝑒𝑖, 𝑒𝑗 and 𝑒𝑘 are cyclically ordered in this way, 

then: 

𝑒𝑖𝑒𝑗 = 𝑒𝑘   ,   𝑒𝑗𝑒𝑖 = −𝑒𝑘     (5.13) 

According to the previous statement, these rules 

hold: 

• 1 is the multiplicative identity. 

• 𝑒1, … , 𝑒7 are square roots of -1 

The Fano plane explains the algebraic structure of the 

octad system of the octonions. Nevertheless, the 

Fano plane of octonions multiplication is not the full 

story. The octonions are projective structures over 

the 2-element field ℤ2 . Precisely, they consist of 

lines passing through the origin in the vector space 

ℤ2
3 [7]. In conclusion, by assuming that 1 ∈ 𝕆 (the 

octonions multiplicative identity), then we can think 

of the Fano plane as the following figure 4 that shows 

the visualization of the “Fano plane” by assuming 

that 1 ∈ 𝕆 [7]: 

 

 

 

 

 

 

 

 

 

 

After accessing the required algorithm for 

multiplying octonions components, we can examine 

the process of multiplication through an example. 

Let 𝑢, 𝑣 ∈ 𝕆 , our multiplication operation can be 

conducted by using the vector form of the octonions 

and multiplying using a matrix [44] 

𝑢 ∙ 𝑣 = (𝑢0,  𝑢1,  𝑢2,  𝑢3,  𝑢4,  𝑢5,  𝑢6,  𝑢7)

∙ (𝑣0,  𝑣1,  𝑣2,  𝑣3,  𝑣4,  𝑣5,  𝑣6,  𝑣7) = 

[
 
 
 
 
 
 
 
𝒖𝟎𝒗𝟎 −𝒖𝟏𝒗𝟏 −𝒖𝟐𝒗𝟐 −𝒖𝟑𝒗𝟑 −𝒖𝟒𝒗𝟒 −𝒖𝟓𝒗𝟓 −𝒖𝟔𝒗𝟔 −𝒖𝟕𝒗𝟕
𝒖𝟏𝒗𝟎 𝒖𝟎𝒗𝟏 𝒖𝟐𝒗𝟒 −𝒖𝟒𝒗𝟐 𝒖𝟓𝒗𝟔 −𝒖𝟔𝒗𝟓 𝒖𝟑𝒗𝟕 −𝒖𝟕𝒗𝟑
𝒖𝟐𝒗𝟎 𝒖𝟎𝒗𝟐 𝒖𝟑𝒗𝟓 −𝒖𝟓𝒗𝟑 𝒖𝟔𝒗𝟕 −𝒖𝟕𝒗𝟔 𝒖𝟒𝒗𝟏 −𝒖𝟏𝒗𝟒
𝒖𝟑𝒗𝟎 𝒖𝟎𝒗𝟑 𝒖𝟒𝒗𝟔 −𝒖𝟔𝒗𝟒 𝒖𝟕𝒗𝟏 −𝒖𝟏𝒗𝟕 𝒖𝟓𝒗𝟐 −𝒖𝟐𝒗𝟓
𝒖𝟒𝒗𝟎 𝒖𝟎𝒗𝟒 𝒖𝟏𝒗𝟐 −𝒖𝟐𝒗𝟏 𝒖𝟓𝒗𝟕 −𝒖𝟕𝒗𝟓 𝒖𝟔𝒗𝟑 −𝒖𝟑𝒗𝟔
𝒖𝟓𝒗𝟎 𝒖𝟎𝒗𝟓 𝒖𝟐𝒗𝟑 −𝒖𝟐𝒗𝟑 𝒖𝟔𝒗𝟏 −𝒖𝟏𝒗𝟔 𝒖𝟕𝒗𝟒 −𝒖𝟒𝒗𝟕
𝒖𝟔𝒗𝟎 𝒖𝟎𝒗𝟔 𝒖𝟑𝒗𝟒 −𝒖𝟒𝒗𝟑 𝒖𝟕𝒗𝟐 −𝒖𝟐𝒗𝟕 𝒖𝟏𝒗𝟓 −𝒖𝟓𝒗𝟏
𝒖𝟕𝒗𝟎 𝒖𝟎𝒗𝟕 𝒖𝟒𝒗𝟓 −𝒖𝟓𝒗𝟒 𝒖𝟏𝒗𝟑 −𝒖𝟑𝒗𝟏 𝒖𝟐𝒗𝟔 −𝒖𝟔𝒗𝟐]

 
 
 
 
 
 
 

 

Note: The octonions multiplication is a non-

commutative operation. Moreover, the 

octonions multiplication is also a non-

associative operation [7, 18, 44, 46]. These 

properties can be verified through the 

following example [44]: 

 
(𝑢1 ∙ 𝑣2) ∙ 𝑤3 = (𝑢𝑣)4 ∙ 𝑤3 = −(𝑢𝑣𝑤)6 

 

𝑢1 ∙ (𝑣2 ∙ 𝑤3) = 𝑢1 ∙ (𝑣𝑤)5 = (𝑢𝑣𝑤)6 
 

Where we use the notation, 𝑢1 =
(0, 𝑢, 0, 0, 0, 0, 0, 0),  (𝑢𝑣)2 =
(0, 0, 𝑢𝑣, 0, 0, 0, 0, 0) [and so on…] for the 

octonions containing only one non-zero 

element [44]. 
 

Figure 3 : The “Fano plane” for octonions multiplication 
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Figure 4 :  The visualization of the “Fano plane” by assuming that 1 ∈ 𝕆 



 

VI.  Cayley – Dickson Construction 

The Cayley – Dickson construction is an algebraic 

construction that relate normed division algebras 

ℝ, ℂ,ℍ,𝕆 [7]. This construction proposes a sort of a 

pattern that generates a sequence of infinite algebras 

relating each algebra with the other. Cayley – 

Dickson construction contribute to the interpretation 

of the non–commutativity of quaternions ℍ and the 

non–associativity of octonions 𝕆. This outstanding 

construction was named after the mathematicians 

Arthur Cayley and Leonard Dickson [9].                                                                                                  

As Hamilton has noted, the complex numbers in 

form of 𝑧 = 𝑎 + 𝑏𝑖 can be thought of as an ordered 

pair in the form of (𝑎, 𝑏) where 𝑎, 𝑏 ∈ ℝ [7, 47]. The 

addition operation is done with respect to respective 

components and the multiplication operation is as 

follows [7, 47]: 

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)     (6.1) 

A conjugate of a complex number can be represented 

in the following form [7]: 

(𝑎, 𝑏)∗ = (𝑎,−𝑏)     (6.2) 

After constructing the complex numbers from the 

real numbers, we can execute the same methodology 

with the quaternions. The quaternions can be thought 

of as an ordered pair of complex numbers. As 

always, the addition is done component – wise, and 

multiplication is as follows [7]: 

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑑𝑏∗, 𝑎∗𝑑 + 𝑐𝑏)     (6.3) 

The conjugate of the quaternions can be represented 

as: 

(𝑎, 𝑏)∗ = (𝑎∗, −𝑏)     (6.4) 

And there is a pattern to a sequence of hypercomplex 

numbers. The octonions can be defined as a pair of 

quaternions. Furthermore, the addition and 

multiplication are defined with the same formulas. 

This idea of an algebra emerging from another 

algebra is called the Cayley – Dickson construction 

[7, 9, 47]. 

The real numbers ℝ , complex numbers ℂ , 

quaternions ℍ  and octonions 𝕆  all have 

multiplicative inverses [7, 9]. The idea of a 

multiplicative inverse can be concluded from the 

following operation between a complex number and 

its conjugation [7]: 

(𝑎, 𝑏)(𝑎, 𝑏)∗ = (𝑎, 𝑏)∗(𝑎, 𝑏) = 𝑘(1, 0)    ,    𝑘 ∈ ℝ     

(6.4) 

The same idea holds for quaternions and octonions. 

As we know, the algebras  ℝ, ℂ,ℍ,𝕆  are all 

considered division algebras. Nevertheless, there 

isn’t an infinite sequence of division algebras. By 

using the Cayley – Dickson construction we can get 

the algebra following the octonions to the infinity, 

but our resulting algebra turns to be worse than 

previous one. First, we lose the order, then we lose 

the commutativity, then we lose the associativity, 

and finally we lose the property of the division 

algebra [7]. 

By continuously applying the Cayley – Dickson 

construction to the octonions, we get a sequence of 

algebras of dimensions 16, 32, 64, and so on. The 

first formed algebra after the octonions is called the 

sedenions (a 16 – dimensional number system) [7, 

48]. The sedenions are not real, non – commutative, 

and neither associative nor alternative. However, the 

sedenions are not a division algebra, and hence all 

the following algebras have zero divisors [7, 49, 50]. 

VII.  QQM (Quaternion Quantum Mechanics) 

Quantum mechanics is a foundational theory in 

modern physics that aims to describing physical 

phenomena and properties of nature on an atomic – 

quantum – scale. Many scientists along the years 

tried to find the correct interpretation of the quantum 

mechanics theory as it might guide us to the ability 

to fully describe the behavior of our universe.  

The quaternion quantum mechanics QQM 

represented a significant benefaction that might 

answer the central question of quantum mechanics 

interpretation. The quaternion quantum mechanics 



 

was proposed for the first time in the year 1936 by 

Birkhoff and J. von Neumann [51, 52]. 

Quaternions are denoted as ℍ, where the quaternion 

notation formulated by Hamilton is that a quaternion 

is a sum of a real scalar and an imaginary vector part 

[51]: 𝜎 = 𝜎0 + �̂� = [𝜎0 + �̂�] ∈ ℍ . A quaternion 

𝜎 ∈ ℍ can be written as [51]: 

𝜎 = (𝜎0 + 𝜙1 + 𝜙2 + 𝜙3) ∈ ℍ     (7.1) 

Where 𝜎0,  𝜙𝑖 ∈ ℝ. Let ℝ4  be the four-dimensional 

Euclidean vector space with the orthonormal basis 

{𝑒0, 𝑒1, 𝑒2, 𝑒3} , such that 𝑒0 = (1,0,0,0),  𝑒1 =
(0,1,0,0),  𝑒2 = (0,0,1,0),  𝑒3 = (0,0,0,1)  with a 

three – dimensional vector subspace 𝑃 =

𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, 𝑒3} [51]. The multiplication formula is 

as follows [51]: 

𝑎 ∙ 𝑏 = (𝑎0𝑏0 − �̂� ∘ �̂�)𝑒0 + �̂� × �̂� + 𝑎0�̂� + 𝑏0�̂�     

(7.2) 

Where 𝑎 = ∑ 𝑎𝑖𝑒𝑖
3
𝑖=0 , 𝑏 = ∑ 𝑏𝑖𝑒𝑖 ∈ ℝ

43
𝑖=0 , �̂� =

∑ 𝑎𝑖𝑒𝑖
3
𝑖=0 , �̂� = ∑ 𝑏𝑖𝑒𝑖 ∈ 𝑃

3
𝑖=0  and ∘, × means scalar 

and vector products in 𝑃 [51]. Then we can deduce 

that [51]: 

�̂� ∘ �̂� = ∑𝑎𝑖𝑏𝑖

3

𝑖=0

       (7.3)  

   �̂� × �̂� = 𝑑𝑒𝑡 [

𝑒1 𝑒2 𝑒3
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

]     (7.4) 

Let Ω ⊂ ℝ3 be a bounded set. The ℍ – valued 

function can be written as: 

𝜎(𝑥) = 𝜎0(𝑥) + 𝜙1(𝑥)𝑖 + 𝜙2(𝑥)𝑗 +
𝜙3(𝑥)𝑘   ,    𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ Ω     (7.5) 

Where the functions 𝜎0(𝑥) , and 𝜙𝑖(𝑥)  are real – 

valued functions. Continuity, differentiability, 

integrability and so on are assigned to 𝜎  must be 

possessed by the four components 

𝜎0(𝑥),  𝜙1(𝑥),  𝜙2(𝑥),  𝜙3(𝑥) . Then, the Banach, 

Hilbert and Sobolev spaces of ℍ – valued functions 

can be defined [51, 53]. In the Hilbert space over ℍ, 

𝐿2(Ω) = {𝜎: Ω → ℍ |∫ 𝜎0
2

Ω

𝑑𝑥 < ∞ , ∫ 𝜙𝑖
2

Ω

𝑑𝑥

< ∞ , 𝑖 = {1,2,3}}     (7.6) 

We define the Sobolev spaces, 

𝐻𝑘(Ω) = {𝜎: Ω → ℍ | 𝜎,  𝜎(1), … ,  𝜎(𝑘) ∈

𝐿2(Ω)} , 𝑘 ∈ ℕ     (7.7) 

Similarly, the functions 𝜎(𝑡, 𝑥) depending on time 𝑡 
may be considered. The operator Cauchy – Riemann 

𝐷 will be acting on the quaternion – valued function 

as follow: 

𝐷𝜎(𝑡, 𝑥) = (−𝑑𝑖𝑣 �̂�)1 + 𝑔𝑟𝑎𝑑 𝜎0 + 𝑟𝑜𝑡 �̂� , 𝜎

= 𝜎01 + �̂�     (7.8) 

Where 𝑔𝑟𝑎𝑑 𝜎0 =
𝜕𝜎0

𝜕𝑥1
𝑖 +

𝜕𝜎0

𝜕𝑥2
𝑗 +

𝜕𝜎0

𝜕𝑥3
𝑘 , 𝑑𝑖𝑣 �̂� =

𝜕𝜙1

𝜕𝑥1
+
𝜕𝜙2

𝜕𝑥2
+
𝜕𝜙3

𝜕𝑥3
 and 

 𝑟𝑜𝑡�̂� = 𝑑𝑒𝑡 [

𝑖 𝑗 𝑘
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2

𝜕

𝜕𝑥3

𝜙1 𝜙2 𝜙3

] 

Under the restriction 𝑑𝑖𝑣�̂� = 0, 𝐷 corresponds to 

the nabla operator ∇ in ℝ3: 

𝐷𝜎(𝑡, 𝑥) = 𝑔𝑟𝑎𝑑 𝜎0 + 𝑟𝑜𝑡 �̂� , 𝜎 = 𝜎01 + �̂�     (7.9) 

Where 𝜎 is a ℍ – valued function. 

Note: 𝐷𝐷𝜎 = −∆𝜎, thus equation (7.9) links 

quaternion quantum mechanics to reality in ℝ3 
 

After stating the required fundamentals to work with 

the quaternions, we can start to link the quaternions 

with the reality. Deformation fields represents the 

vector field representation when a force is applied to 

an object, they are either compression (irrotational) 

or twist (rotational). The compression field is 

denoted by 𝜎0 = 𝑑𝑖𝑣 𝑢 and twist field is denoted by 

�̂� = 𝑟𝑜𝑡 𝑢. Helmholtz made a use of quaternions by 

proposing the Helmholtz decomposition, 



 

furthermore he proved that any deformation field 𝑢 

can be decomposed to a compression field 𝑢0 and a 

twist field 𝑢𝜙 [51, 53]. Hence,  

𝑢 = 𝑢0 + 𝑢𝜙  ,  𝜎0 = 𝑑𝑖𝑣 𝑢0   ,    �̂� = 𝑟𝑜𝑡 𝑢𝜙     

(7.10) 

In the year 1822 Cauchy finished his theory of the 

ideal elastic continuum or in other words the Cauchy 

displacement mechanics [51, 54, 55]. Cauchy’s 

displacement mechanics was specified for 

calculating the mechanical behavior of elastic body. 

Cauchy developed an equation called Cauchy 

equation of motion in order to describe the elastic 

bodies mathematically. The equation of motion 

relates the acceleration 𝑢  due to the displacement 

with the variables of field deformation: compression, 

and twist [51, 53]. 

𝜕2𝑢

𝜕𝑡2
= 3𝑐2𝑔𝑟𝑎𝑑𝑑𝑖𝑣 𝑢 − 𝑐2𝑟𝑜𝑡𝑟𝑜𝑡 𝑢     (7.11) 

Where 𝑐 = √0.4Υ/ρp such that Υ  is young’s 

modulus and ρp is continuum density. The previous 

equation (7.11) means that the acceleration equals 

the twist of the twist subtracted from the gradient of 

the compression. The equation represented a huge 

conundrum as it cannot be reduced to a vectorial 

model [51, 56]. After many tries Hamilton realized 

that the problem cannot be modelled in algebra ℝ3 
vector space. Moreover, he realized it needs a 4 – 

dimensional vector space. Therefore, a deformation 

field 𝜎 can be written as a quaternion such that the 

compression 𝜎0 is the scalar (real part) and the twist 

�̂� is the vector (imaginary part). 

[
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

] = [𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛] + [𝑇𝑤𝑖𝑠𝑡]  ⟹ 

[𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛] = [𝑠𝑐𝑎𝑙𝑎𝑟] + [𝑣𝑒𝑐𝑡𝑜𝑟] 

[𝜎] = [𝜎0] + [𝜙1𝑖 + 𝜙2𝑗 + 𝜙3𝑘]     (7.12) 

By combining Hamilton quaternion algebra [51] and 

Cauchy’s classical mechanics [51, 55, 56], it starts to 

relate with the quaternion quantum mechanics. By 

combining Cauchy equation of motion with 

Helmholtz decomposition of fields equation and 

applying the divergence to it we get, 

𝑑𝑖𝑣 (
𝜕2

𝜕𝑡2
(𝑢0 + 𝑢𝜙) = 3𝑐

2𝑔𝑟𝑎𝑑𝑑𝑖𝑣(𝑢0 + 𝑢𝜙) − 𝑐
2𝑟𝑜𝑡𝑟𝑜𝑡 𝑢) = 

𝜕2

𝜕𝑡2
(𝑑𝑖𝑣 𝑢0 + 𝑑𝑖𝑣 𝑢𝜙) = 3𝑐

2𝑑𝑖𝑣𝑔𝑟𝑎𝑑(𝑑𝑖𝑣 𝑢0 + 𝑑𝑖𝑣 𝑢𝜙) 

Let’s substitute by 𝑑𝑖𝑣𝑟𝑜𝑡 𝐴 = 0, 𝑑𝑖𝑣 𝑢𝜙 = 0,

𝜎0 = 𝑑𝑖𝑣 𝑢0. 

1

3𝑐2
𝜕2𝜎0
𝜕𝑡2

= ∆𝜎0     (7.13) 

The previous equation (7.13) represents a 

longitudinal wave in ℝ3 [51]. 

By combining Cauchy equation of motion with 

Helmholtz decomposition of fields equation and 

applying the rotation to it we get, 

𝑟𝑜𝑡 (
𝜕2

𝜕𝑡2
(𝑢0 + 𝑢𝜙) = 3𝑐

2𝑔𝑟𝑎𝑑𝑑𝑖𝑣(𝑢0 + 𝑢𝜙) − 𝑐
2𝑟𝑜𝑡𝑟𝑜𝑡 𝑢),   

 𝑟𝑜𝑡 𝑢0 = 0 

𝜕2

𝜕𝑡2
(𝑟𝑜𝑡 𝑢0 + 𝑟𝑜𝑡 𝑢𝜙) = 𝑐

2𝑔𝑟𝑎𝑑𝑑𝑖𝑣(𝑟𝑜𝑡 𝑢0 + 𝑟𝑜𝑡 𝑢𝜙) 

+2𝑐2𝑔𝑟𝑎𝑑𝑑𝑖𝑣(𝑟𝑜𝑡 𝑢0 + 𝑟𝑜𝑡 𝑢𝜙) − 𝑐
2𝑟𝑜𝑡𝑟𝑜𝑡(𝑟𝑜𝑡 𝑢0 + 𝑟𝑜𝑡 𝑢𝜙) = 

𝜕2

𝜕𝑡2
𝑟𝑜𝑡 𝑢𝜙 = 𝑐

2𝑔𝑟𝑎𝑑𝑑𝑖𝑣(𝑟𝑜𝑡 𝑢𝜙) − 𝑐
2𝑟𝑜𝑡𝑟𝑜𝑡(𝑟𝑜𝑡 𝑢𝜙)

+ 2𝑐2𝑟𝑜𝑡[𝑔𝑟𝑎𝑑𝑑𝑖𝑣(𝑢0 + 𝑢𝜙)] 

By substituting �⃑� = 𝑟𝑜𝑡 𝑢𝜙. We get, 

𝜕2�⃑� 

𝜕𝑡2
= 𝑐2(𝑔𝑟𝑎𝑑𝑑𝑖𝑣 𝜙⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  − 𝑟𝑜𝑡𝑟𝑜𝑡 𝜙⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ) = 𝑐2∆�⃑�  

Then we replace 𝑔𝑟𝑎𝑑𝑑𝑖𝑣 𝐴 − 𝑟𝑜𝑡𝑟𝑜𝑡 𝐴 = ∆𝐴 

𝜕2�⃑� 

𝜕𝑡2
= 𝑐2∆�⃑�      (7.14) 

The previous equation (7.14) represents a transverse 

wave [51]. Therefore, we can conclude that by 

combining Cauchy equation of motion with 

Helmholtz decomposition of fields equation, we can 

form many shapes of waves. 

𝜕2𝜎

𝜕𝑡2
= 𝑐2∆𝜎0 + 2𝑐

2∆𝑢0     (7.15) 



 

We formulated a general second – order partial 

differential equation that will be used generously in 

the following examples. The energy of deformation 

field per unit mass is represented by the following 

equation [51]: 

𝑒 =
1

2
�̂� ∙ �̂�∗ +

1

2
𝑐2𝜎 ∙ 𝜎∗ + 𝑐2𝜎0

2     (7.16) 

𝑒 = energy per mass unit in the deformation field 

𝜎 = 𝜎0 + �̂�  ,   𝜎∗ = 𝜎0 − �̂� 

�̂� =
𝜕𝑢

𝜕𝑡
  

Stationary wave ≡ particle 𝑚 in Ω [51]: 

𝐸𝑚(Ω) = ∫ 𝜌𝑝 (
1

2
�̂� ∙ �̂�∗ +

1

2
𝑐2𝜎 ∙ 𝜎∗ + 𝑐2𝜎0

2

Ω

+ 𝑐2�̃�(𝑥))𝑑𝑥     (7.17) 

𝐸𝑚(Ω) = total energy in the deformation field 

�̃�(𝑥) = external field 

By substituting 𝜓 = √
𝜌𝑝

(2𝑚)
𝜎 in the equation (7.17) 

of the total energy. We get, 

𝐸𝑚(Ω) = 𝑚𝑐
2∫ (

𝑚𝑃
𝑚

𝜌𝑝

2𝑚
(
�̂�

𝑐
∙
�̂�∗

𝑐
) + 𝜓 ∙ 𝜓∗

Ω

+
2𝑚

𝑚𝑃𝑐2
𝑉(𝑥)𝜓 ∙ 𝜓∗) 𝑑𝑥 

Let’s use the Cauchy – Riemann operator 𝐷 such 

that 
𝑢

𝑐⏟
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

= −𝑙𝑃𝐷𝜎⏟  
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑎𝑑𝑖𝑒𝑡
𝑜𝑓 𝑚𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

 

𝐸𝑚(Ω) = 𝑚𝑐
2∫ 𝜌𝑝 (

𝑚𝑃
𝑚

𝜌𝑝

2𝑚
(𝐷𝜎 ∙ 𝐷𝜎∗) + 𝜓 ∙ 𝜓∗

Ω

+
2𝑚

𝑚𝑃𝑐2
𝑉(𝑥)𝜓 ∙ 𝜓∗) 𝑑𝑥 

Then by minimizing the expression we get The Du 

Bois Reymond lemma [51, 57].  

−
𝑚𝑝
2𝑐2𝑙𝑝

2

2𝑚
∆𝜓 + 𝑉(𝑥)𝜓 = 𝜆𝜓     (7.18) 

where a constant factor on the right-hand side can be 

considered as extra energy of the particle in the 

presence of the field 𝑉 = 𝑉(𝑥). It has to be satisfied 

with the condition 𝑑𝑖𝑣 �̂� = 0  where 𝜓 = 𝜓0 + �̂�. 
Finally, we end up with the invariant Schrödinger 

equation: 

−
ħ2

2𝑚
∆𝜓 + (𝑉(𝑥) − 𝜆)𝜓 = 0    (7.19) 

We fully formulated the Schrödinger equation from 

quaternions in the equation (7.19). By Similar 

approach to the complex – time dependent 

Schrödinger equation 

𝑖ħ
𝜕𝜓

𝜕𝑡
= −

ħ2

2𝑚
∆𝜓 + 𝑉(𝑥)𝜓     (7.20) 

We can introduce the quaternion form: 

1

3
(𝑖 + 𝑗 + 𝑘)ħ

𝜕𝜓

𝜕𝑡
== −

ħ2

2𝑚
∆𝜓 + 𝑉(𝑥)𝜓     (7.21) 

Let’s substitute the function Ψ(𝑡, 𝑥) =

𝑒−
(𝑖+𝑗+𝑘)

𝐸

ħ
𝑡𝜓(𝑥) in the equation (7.21). In fact, by 

substituting this arbitrary function in the equation we 

will get time – dependent Schrödinger equation 

(7.20). 

Ψ(𝑡, 𝑥) = [cos (√3
𝐸

ħ
𝑡) −

1

√3
(𝑖 + 𝑗 + 𝑘) sin (√3

𝐸

ħ
𝑡)]𝜓(𝑥), 

𝜕𝜓

𝜕𝑡
(𝑡, 𝑥) = [−√3

𝐸

ħ
sin (√3

𝐸

ħ
𝑡)

−
1

√3
(𝑖 + 𝑗 + 𝑘)

𝐸

ħ
cos (√3

𝐸

ħ
𝑡)] 𝜓(𝑥), 

𝜕𝜓

𝜕𝑡
(𝑡, 𝑥) = −(𝑖 + 𝑗 + 𝑘)

𝐸

ħ
[cos (√3

𝐸

ħ
𝑡)

−
1

√3
(𝑖 + 𝑗 + 𝑘) sin (√3

𝐸

ħ
𝑡)]𝜓(𝑥) = 

−(𝑖 + 𝑗 + 𝑘)
𝐸

ħ
 𝑒−

(𝑖+𝑗+𝑘)
𝐸
ħ
𝑡𝜓(𝑥)     (2.22) 

Obviously, 

∆Ψ(𝑡, 𝑥) = 𝑒−
(𝑖+𝑗+𝑘)

𝐸
ħ
𝑡∆𝜓(𝑥)    (7.23) 



 

Then it can be concluded that that equation (7.23) 

implies the equation (7.20) [51]. Think about the case 

where Ψ1 = Ψ2 = Ψ3  and let Ψ ̃: = Ψ1 = Ψ2 = Ψ3 . 

Then Ψ ≔ Ψ0 +
𝑖+𝑗+𝑘

√3
Ψ̃ solves the quaternion time 

– dependent Schrödinger equation ⟺ Ψ ≔ Ψ0 + 𝑖Ψ̃ 

solves the complex Schrödinger equation. 

1

√3
𝑖ħ
𝜕𝜓

𝜕𝑡
= −

ħ2

2𝑚
∆𝜓 + 𝑉(𝑥)𝜓     (7.24) 

In conclusion, we have discussed the quaternions, 

Cauchy equations of motion, Helmholtz 

decomposition and quaternion quantum mechanics. 

We gathered the required information to relate 

between the quaternions with the elasticity models of 

Cauchy and derive from these models the well – 

known foundations of quantum mechanics. 

VIII.  Three-Dimensional Rotation 

One of the main applications of quaternions is the 

three-dimensional rotation that describes the 

attitude of a rigid body. Before getting to using 

quaternions to represent three-dimensional rotation, 

we will briefly explore other approaches.  

i. Euler Angles 

Euler angles is a common method to describe 

orientation as a sequence of three rotations about 

three mutually perpendicular axes. To do so, a 

widely used method is the "heading-pitch-bank" 

system that performs the rotation according to the 

following steps: 

1- Start with the original orientation. 

2- Heading: Perform the rotation with angle θ 

about the y-axis.  

3- Pitch: Measures the amount of rotation ψ 

about the object-space x-axis or the angle of 

declination. 

4- Bank: Measures the amount of rotation φ 

about the object-space z-axis. 

This process gives the possibility of forming up 

to 12 different sequences of rotation expanded 

as follows: 

𝑥𝑦𝑧 𝑦𝑧𝑥 𝑧𝑥𝑦
𝑥𝑧𝑦 𝑦𝑥𝑧 𝑧𝑦𝑥
𝑥𝑦𝑥 𝑦𝑧𝑦 𝑧𝑥𝑧
𝑥𝑧𝑥 𝑦𝑥𝑦 𝑧𝑦𝑧

 

To ensure the uniqueness of each orientation using 

Euler angles, the heading angle θ and the bank 

angle φ are restricted to a domain of [-180°,180°], 

whereas the pitch angle ψ (The second rotation) is 

restricted to a domain of [-90°,90°].  As much as it 

seems easy to perform rotations with Euler angles, 

an irritating problem might be encountered in 

certain cases. If we set the patch angle to ±90°, it 

may force the first and the third rotations (heading 

and bank) to be performed about the same axis or to 

be aligned. This phenomenon is known as the 

Gimbal Lock, illustrated in figure 5.  

 

 

 

 

 

To avoid this problem, the heading rotation can be 

performed about the vertical axis and the bank angle 

is set to 0°. However, this method is still possible to 

represent any 3-D rotation with Euler angles [58, 

59, 60]. 

ii.  The Axis-Angle Representation 

Euler's rotation theorem states that three-

dimensional rotation can be accomplished via one 

rotation about one axis instead of 3 [61]. Hence, an 

angular displacement can be described according to 

2 values: an angle of rotation θ and a unit vector n̂: 

(θ, n̂).  Since n̂ is a unit vector with a norm value of 

1, we can multiply it by θ without causing any 

troubles. Consequently, we can form what is called 

an exponential map. Such that, 

𝑒 = 𝜃n̂     (8.1) 

and 𝜃 = ‖𝑒‖ [5].  

Figure 5: The Gimbal Lock 



 

iii.  Quaternion 3-D Rotation 

As previously mentioned, the set of quaternions 

define the elements in ℝ4, but an alternative 

representation of quaternions is defining them by 

two parts: a scalar (real) part and a vector part in 

ℝ3. By this we can represent a quaternion q as 

𝑞 = 𝑞0 + 𝑞 = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3     (8.2) 

where 𝑞0 is the scalar and q is the 3-D vector. A 

quaternion with a 𝑞0 value of zero is called a Pure 

Quaternion. Thus, the product of a vector and a 

quaternion is the same as the quaternion product of 

a quaternion and a pure quaternion [62]. According 

to Euler's theorem of rotation, the rotation of a 3-D 

vector occurs about an axis of rotation u and an 

angle of rotation θ. Thus, for a unit quaternion 

q =  𝑞0  +  q =  cos 
θ

2
 +  u sin 

θ

2
     (8.3) 

A vector v in ℝ3 can be written as  𝑣 = 𝑎 + 𝑛, 

where 𝑎 is the component along q and n is normal 

to q. For any unit quaternion, an operator on a 

vector v in ℝ3 can be defined using a unit 

quaternion as follows: 

𝐿𝑞(𝑣) = 𝑞𝑣�̅� = 

 (𝑞0
2  −  ‖𝑞‖ 2 )v +  2(q ·  v)q +  2𝑞0(q ×  v) 

(8.4) 

Where �̅� is the quaternion conjugate and ‖𝑞‖ is the 

norm. The operator 𝐿𝑞 does not change the length 

nor the direction of v. In other words, 𝑎 is invariant 

and n is the rotation about q with angle θ. And since 

𝐿𝑞 is in fact a linear operator, 𝑞𝑣�̅� can be 

considered a rotation of v about q with angle θ. 

Applying the operator on the n component, we find 

the following: 

𝐿𝑞(n)  =  (𝑞0
2  − ‖𝑞‖ 2)n +  2(q ·  n)q 

+  2𝑞0(q ×  n) 

 =  (𝑞0
2  − ‖𝑞‖ 2 )n +  2𝑞0(q ×  n)  

          = (𝑞0
2  − ‖𝑞‖ 2 )n +  2𝑞0‖𝑞‖(u ×  n)                  

Where 𝑢 =
𝑞

‖𝑞‖
. Since 𝑛⊥  =  u ×  n, we can rewrite 

the equation as 

(𝑞0
2  − ‖𝑞‖ 2 )n +  2𝑞0‖𝑞‖𝑛⊥    (8.5) 

Since 𝑛⊥ has the same length as n 

‖𝑛⊥‖ = ‖𝑛 × 𝑢‖ = ‖𝑛‖ ∙ ‖𝑢‖ sin
𝜋

2
= ‖𝑛‖ 

We can rewrite the equation as  

𝐿𝑞(n) = (𝑐𝑜𝑠
2
θ

2
− 𝑠𝑖𝑛2

θ

2
) 𝑛 + (2 cos

θ

2
 sin

θ

2
) 𝑛⊥

= cos θ 𝑛 + sin θ 𝑛⊥     (8.6) 

This rotation of n can be represented with the unit 

quaternion by substituting in (8.3) [63]: 

𝐿𝑞(v) =  (𝑐𝑜𝑠
2 θ

2
− 𝑠𝑖𝑛2

θ

2
) v +  2 (𝑢 sin

𝜃

2
∙

𝑣) u sin
θ

2
+ 2 cos

θ

2
(𝑢 sin

θ

2
× 𝑣)   =  cos θ ·  v +

 (1 −  cos θ)(u ·  v)u +  sin θ ·  (u ×  v)    (8.7) 

The same can be applied to any rotation of a vector 

in ℝ3to be represented with a unit quaternion. 

Representation of 3-D rotation with a unit 

quaternion is preferable in multiple fields, 

especially in game development, 3-D graphics, and 

robotics since it offers the advantages of continuity 

and ease of construction compared to other 

approaches such as the rotation matrices [64, 65].  

IX.  Conclusion 

After the preceding investigation, we can conclude 

that the study of the higher-dimensional complex 

numbers is a vital field of mathematics, specifically 

abstract algebra, engaging in various applications 

and areas of study. There are four known norm 

division algebras: Real Numbers ℝ, Complex 

Numbers ℂ, Quaternions ℍ, and Octonions 𝕆 with 

dimensions 1,2,4, and 8, respectively. The discovery 

of complex numbers went through hundreds of years 

between acceptance and disapproval, from unveiling 

the existence of the square root of −1 to Gauss’s 

construction of the two-dimensional complex plane. 

In 1843, Hamilton crowned his intensive work on 

complex numbers and their generalization with his 



 

discovery of quaternions: Associative, non-

commutative under multiplication four-dimensional 

algebras with the imaginary units 𝑖, 𝑗  and  𝑘 . 

Hamilton’s rules of multiplication: 𝑖2 = 𝑗2 = 𝑘2 =

𝑖𝑗𝑘 = −1 . In the same year, John T. Graves 

generalized the study of Hamilton by extending his 

Quaternions to eight dimensions, constructing the 

Octonions: Non-associative, non-commutative under 

multiplication eight-dimensional algebras of the 

form 𝕆 = {𝑎0 + ∑ 𝑎𝑖𝑒𝑖
7
𝑖=1 : 𝑎1, … , 𝑎7 ∈ ℝ} , where 

𝑒 = √−1 . The Cayley-Dickson Construction is a 

method developed by mathematicians Arthur Cayley 

and Leonard Dickson used to obtain new algebras 

from old algebras by defining the new algebra as a 

product of an algebra with itself by conjugation.  

Consequently, this construction gives us the reasons 

why octonions are larger than quaternions and 

quaternions can fit into the set of octonions, and so 

with complex and real numbers. Additionally, it tells 

us why ℍ is non-commutative under multiplication 

and why 𝕆 is non-associative. Working with 

imaginary numbers in such ways may seem 

ambiguous and ridiculous. Hyper-complex numbers 

are crucial to quantum mechanics since they might 

be the key to find the correct interpretation of 

quantum mechanics theory. Furthermore, quaternion 

rotation forms the fundamentals of kinematic 

modeling in robots, and octonions are essential in 

other branches of abstract algebra. Thus, this paper is 

an insight into the world of insane imaginary 

numbers with a fascinating demonstrated ability to 

be applied physically in the real world.  
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