

Cryptography

Improved RSA Algorithm Counterparts

by Exploiting Implementation Attacks

Karim Mohamed, STEM High School for Boys – 6th of October

Adham Ahmed, STEM High School for Boys – 6th of October

Abstract

RSA, being the first asymmetric-key algorithm, has caused an evolution in the

science of cryptography, becoming one of the most used encrypting algorithms.

These outcomes have resulted in the algorithm receiving a vast number of attacks.

One type of these attacks, implementation attacks, poses a crucial threat to RSA.

Moreover, due to having other algorithms (e.g., Diffie-Hellman key exchange and

elliptic curves algorithm) that are formulated nearly similar to RSA, as well as the

mechanisms of the implementation attacks, the dangers of these attacks are found

in these other algorithms too. Since the popularity of RSA, most of the research,

which provides an improved counterpart of the algorithm secured against this

attack, is conducted for RSA. This paper examines two of the most known

implementation attacks— timing attacks, and fault attacks— analyzing their

methodology and investigating methods to counter them. Finally, the paper

evaluates the possibility of having an improved variation of RSA that is feasible to

be used in the present.

I. Introduction

Cryptography, the science of establishing techniques

to ensure secure communication [1], is well thought-

out as one of the human necessities. In fact, the

initiation of cryptography is thought to be dated back

to approximately 1900 B.C.; some Egyptian scribes

formulated a deviant type of hieroglyphs as a form of

communication that they only can understand [2].

Throughout history, earlier forms of

cryptography were generally used only for military

and political purposes, using non-advanced

techniques for ciphering messages— yet it was

decisive such as the Enigma machine (depicted in

Figure 1)— requiring a single key to revert the

ciphering. However, with the rise of modern

machines, cryptography began revolutionizing and

started to come out publicly to ensure the privacy of

the communication, having the risk of the key being

Figure 1: Symmetric-key Enigma Machine

exposed while being transferred increased, thus

another technique for cryptography was needed [3].

In 1976, Whitfield Diffie and Martin Hellman

proposed a new method for key distribution. Diffie

and Martin prospected replacing the single

encryption-decryption key with two keys, one for

encrypting, which is transferred and can be known to

the public, while the other for decrypting, which is

only known by the receiver, calling it asymmetric-

key algorithm. Nevertheless, they faced a critical

problem: not being able to implement the idea in a

working algorithm [4].

A year later, in 1977, Ronald Rivest, Adi

Shamir, and Leonard Adleman invented a working

asymmetric-key algorithm, naming it RSA for the

first letter of their names [3]. The RSA algorithm is

recognized as a considerable advancement in

cryptography, theorizing the field of modern

cryptography and becoming the first asymmetric-key

algorithm.

Being considered the most used encryption

algorithm, the number of attacks done in an attempt

to break the RSA algorithm is numerous. Attacks can

be mainly classified into four types: elementary

attacks, which are basic attacks that exploit the

flagrant nature of the algorithm; low private exponent

attacks, which are attacks that can break the systems

that use low-value private key; low public exponents

attacks, which are, similar to low private exponent

attacks, attacks that can break systems that use low-

value public key; and finally implementation attacks,

which are attacks that aim at the blunders of the

implementation of the algorithm [5].

Implementation attacks are the most powerful

and complex, since they aim to exploit the system’s

application to the algorithm. Hence, they are often

intricately designated, involving many mathematical

attacks [6]. Examples of implementation attacks are

timing attacks and fault attacks (which are our sole

focus in this paper). Nevertheless, this type of attacks

had a great role in the development of the RSA

algorithm. As with the proper utilization of the fields

of number theory, came better variations and

implementations of the RSA algorithm, providing a

counterpart for the earlier implementation attacks.

The following paper will describe

comprehensively two of the most used

implementation attacks: timing attacks and fault

attacks, thoroughly explaining their idea and

implementations with going through their

counterparts and the number theory behind them.

II. RSA Algorithm

i. Overview

RSA is an asymmetrical encryption algorithm,

meaning two keys are generated and used. The first

key, the private key, is kept secret by the person

generating the keys. The second key, the public key,

can be freely distributed to anyone. When data is

encrypted by one key, only the other key can decrypt

it. For example, if I have my RSA keys set up and you

have my public key, you can send me a message

that’s encrypted with my public key and only I can

decrypt the message (because I hold my private key).

Similarly, it can be used to prove authenticity. If I

have a message that I want to prove is from me I can

encrypt it with my private key. Now, anybody who

has my public key can prove that I sent the message.

This is called “message signing”. These two concepts

are combined while using the RSA algorithm to

ensure that the message is coming from this sender

and only the receiver can decrypt it. [11]. The main

scheme of the RSA algorithm is based on how

challenging is to prime factor huge numbers, even

with the existing computational power and

algorithms, it would take for an average workstation

computer with two running CPUs roughly 5000 hours

(208 days) to prime factor a 156-digit number [2].

ii. Mechanism

Suppose Bob and Alice want to communicate, but

they have never met before and neither of them wants

to spend the time to send a courier with a key. As a

result, Eve might possibly learn everything Alice

communicates to Bob. However, a message could

still be transmitted so that Bob can read it, but Eve

cannot; This would be impossible using any of the

basic symmetric-key techniques. Diffie and

Heilman's seminal study first made the feasibility of

the current system known as a public key

cryptosystem; However, they lacked a working

implementation. at the time Several strategies were

put forth during the following few years. The most

effective one was introduced by Rivest, Shamir, and

Adleman in 1977 and is known as the RSA algorithm.

It is based on the point that the factorization of

numbers into their prime components is difficult.

The RSA algorithm operates as follows, in

order to create Bob chooses two unique huge primes

𝑝 and 𝑞 then multiplies them 𝑛 = 𝑝𝑞 . He also

chooses an encryption exponent 𝑒 such that

gcd{ 𝑒, 𝑝 − 1 × 𝑞 − 1} = 1. While keeping the

values of 𝑝 and 𝑞 secret, Bob sends Alice the pair 𝑛

and 𝑒. Now Alice can communicate with Bob safely

without ever needing to know 𝑝 and 𝑞. Alice uses the

letter 𝑚 to convey her message. If 𝑚 is greater than

𝑛, she divides the message into blocks that are each

less than 𝑛 . Alice then computes 𝐶 = 𝑚𝑒 (mod 𝑛)

and sends 𝐶 to Bob. Since Bob knows 𝑝 and 𝑞, he

can compute 𝑝 − 1 and 𝑞 − 1, therefore he can find

the decryption exponent 𝑑 with 𝑑𝑒 = 1 (mod 𝑝 −

1 × 𝑔 − 1). As 𝑚 = 𝐶𝑑 (mod 𝑛), Bob can read the

message.

The algorithm can be summarized as follows:

1- Bob calculates 𝑛 = 𝑝𝑞 using two secret

prime numbers 𝑝 and 𝑞.

2- Bob chooses 𝑒 with gcd{ 𝑒, 𝑝 − 1 × 𝑞 −

1} = 1.

3- Bob computes 𝑑 with 𝑑𝑒 = 1 (mod 𝑝 −

1 × 𝑔 − 1)

4- Bob makes 𝑛 and 𝑒 public and keeps 𝑝, 𝑞

and 𝑑 secret.

5- Alice encrypts 𝑚 as 𝐶 = 𝑚 (mod 𝑛) and

sends 𝐶 to Bob.

6- Bob decrypts 𝑚 by computing 𝑚 = 𝐶𝑑 (mod

𝑛).

III. Timing Attacks

Suppose that you could interfere in the middle of a

system (a smartcard for example) that uses the RSA

algorithm. Due to the design of this algorithm, you

would be able to obtain only 𝐶 and the public keys 𝑝

and 𝑞 , where, as explained in Section II, you can

calculate the message 𝑀 using 𝑀  ≡  C𝑑 (mod 𝑁).

Yet, the only way to get the private key 𝑑 is through

brute-forcing or prime factoring 𝑛, which would take

300 trillion years for a 2048-bits RSA algorithm [7].

i. Mechanism

Paul Kocher proposed a type of attack that could

break this encryption in [8]. By measuring the time

needed to perform decryption and then perform series

of calculation to get the private key 𝑑. This type of

attack is now known as Timing attack.

First of all, to explain how the attack works,

we will use the earliest form of the attack which is

found in [8] and [5].

Let 𝑑 in its binary form

𝑑 = ∑ 2𝑖𝑑𝑖 where 𝑑𝑖

𝑛

𝑖=0

∈ {0,1}

applying it in 𝑀 = 𝐶𝑑 (mod 𝑁),

𝐶 = ∏ 𝑀2𝑖𝑑𝑖

𝑛

𝑖=0

Now using the repeated squaring algorithms:

 Set 𝑧 equal to 𝐶 and 𝑀 equal to 1. Then for 𝑖 =

 0, … , 𝑛 do the following:

 1- If 𝑑𝑖 = 1, Set 𝑀 to 𝑀𝑧 (mod 𝑁)

 2- Set 𝑧 to 𝑧2 (mod 𝑁)

 Now, 𝑀 has the value of 𝐶𝑑 (mod 𝑁)

This will lead the equation to compute in less than or

equal to 2𝑛 times, instead of 𝑑 times [5].

Now to apply the attack, let the smartcard

generate a number of messages 𝑘 (i.e., 𝐶1, … , 𝐶𝑘) and

measure the time 𝑇𝑖 needed to decrypt each message.

If 𝑑 is odd, then 𝑑0 = 1, 𝑀 = 𝐶, and 𝑧 = 𝐶2 (mod

𝑁). Now if 𝑑1 = 1, the smartcard computes 𝑀𝑧 =

𝐶 × 𝐶2 (mod 𝑁). Else if 𝑑1 = 0, it does not. Let 𝑡𝑖 be

the time needed to compute 𝐶𝑖 × 𝐶𝑖
2 (mod 𝑁). Since

the time to compute 𝐶𝑖 × 𝐶𝑖
2 (mod 𝑁) depends on the

value of 𝐶𝑖 (calculating modulus takes different

amount of time depending on the value of the

number, hence each 𝑡𝑖 takes different amount of time

from each other.

As Kocher perceived, in [8], depicted in

Figure 2 if 𝑑1 = 0, then 𝑡𝑖 and 𝑇𝑖 are independent

from each other. While if 𝑑1 = 1 , 𝑡𝑖 and 𝑇𝑖 are

correlated to each other. Hence, Kocher could

determine if the value of 𝑑1 is 0 or 1 depending on the

correlation of 𝑡𝑖 and 𝑇𝑖. By this way, he can continue

determining 𝑑2 , 𝑑3 , ..., 𝑑𝑛 . Then by reverting the

binary representation, Kocher could finally get the

decryption key 𝑑.

ii. Countermeasures

A simple way to counter timing attacks is by giving

all the numbers the same amount of time to do

modular exponentiation (for example by delaying all

the smaller numbers to have the same duration as the

largest one), yet this would decrease the performance

time of the algorithm. Another method is by using

Blinding. Before calculating 𝑀 = 𝐶𝑑 (mod 𝑁),

choose random number 𝑟 and 𝑠 such that 𝑠 = 𝑟𝑒

(mod 𝑛); compute 𝑋 = 𝐶𝑠 (mod 𝑁) and 𝑌 = 𝑋𝑑

(mod 𝑁), hence 𝑀 = 𝑌/𝑟 (mod 𝑛). Here the

attacker can not use a timing attack, because the

exponentiation process is done on an unknown

random value 𝑋 , instead of the known value 𝐶 ;

However, Werner Schindler shows in [9] that an

improved variation of timing attacks can still break a

blinding RSA algorithm.

[10] introduces a better variation for RSA,

which resists most of the attacks (including timing

attacks); this algorithm works as follows:

Suppose you have 𝐴 wants to send a message to 𝐵.

First: 𝐴 will prepare public keys the same way as the

standard RSA algorithm.

Second: 𝐵 will do as following to encrypt the

message:

1- Obtain 𝐴's public keys (𝑁, 𝑒)

2- Represent the message in 𝑀 such that 𝑀 < 𝑁

3- Select a random integer 𝑘 such that gcd{k,  n} =  1

4- Compute 𝑐1 = 𝑘𝑒 (mod 𝑁)

5- Compute 𝑐2 = 𝑚{𝑒}𝑘 (mod 𝑁) Figure 2: Graph showing computational power when

𝑑𝑖 = 0 and 𝑑𝑖 = 1

6- Send (𝑐1, 𝑐2) to 𝐴

Finally, 𝐴 should do the following to decrypt the

message:

1- Use private key 𝑑 and compute 𝑐1 = 𝑘 (mod 𝑁)

2- Use the Euclidean algorithm and calculate the

integer 𝑠 such that 𝑠𝑘 ≡ 1 (mod 𝑁)

3- Compute 𝑐2𝑠 = (𝑚𝑒𝑘)𝑠 = 𝑚𝑒(𝑘𝑠) = 𝑚𝑒 (mod

𝑁)

4- Use the private key 𝑑 to compute (𝑚𝑒)𝑑 =

𝑚 (mod 𝑁)

Using this algorithm, instead of the standard

RSA algorithm, will provide more secure

communication, as this improved variation counters

timing attacks, since using 𝑘 in encryption and

decryption makes it challenging to distinguish

between the time is taken for 𝑘 and the time for the

public key 𝑒 or the private key 𝑑.

IV. Fault Attacks

From electrical devices, fault attacks retrieve secrets

by taking advantage of hardware flaws. Boneh,

DeMillo, and Lipton introduced fault-based attacks

against CRT-RSA in the late 1990s. In situations

when the message padding function is deterministic,

these techniques factor the signer's modulus. The

attack does not apply when the message is only

partially known, such as when messages contain

some randomness that can only be recovered when a

valid signature is verified. A fault attack is an assault

on a physical, electronic device in order to produce

errors that cause the system to lose security (such as

key recovery, an increase in an electronic purse

balance, the acceptance of a false signature, or PIN

code recovery) [12].

A fault attack is a live attack that

compromises cryptographic hardware and allows

secret information to be extracted. Attackers actively

participate in fault assaults by providing other inputs

in addition to the main input, such as fuzzing,

radiation, heat, and vibration. By doing these,

additional (typically incorrect) outputs are found that

can provide further details about the algorithm and/or

the secret. This procedure is explained in Figure 3

i. Fault Methods

Power supply attacks: In case if the gadget isn't

powerful enough, CMOS transistors are driven by

power in electronic devices. If the device is

marginally underpowered, some of the transistors

may not be switched, leading to inaccurate

computations. If the device is even slightly

underpowered, it may have trouble entering an

operational state (a boot loop), or it may even become

completely broken. Injecting power spikes into the

power supply is another attack strategy (to a similar

effect).[1]

A device will become unstable and introduce

problems if its power supply is underpowered or

overpowered since some sections of a device are

often more sensitive to it than others.

The most obvious situation for such an attack

is when the device is owned by or under the attacker's

control, as may be the case if they are looking at their

own set-top box, etc. In such instances, the attacker is

free to provide the gadget with any amount of power

they desire.

Figure 3: A schematic diagram of fault attacks and leakage

types

Clock/Timing attacks: The clock, which is typically

a bus shared by many of the system's components,

synchronizes the propagation of calculations through

the system; in other words, all inputs are prepared at

the beginning, and when there is a rising edge on the

clock bus, they begin propagating throughout the

various computational components. When all

calculations are complete, they all wait for the

following rising edge on the clock bus to go on to the

following phase. A rising edge would be injected on

the clock bus at a random time during a clock

glitching assault. In this manner, the device will be

defective (unstable) since only part of the

computations will have finished by that time while

others are still being processed.

Temperature attacks: This attack strategy makes

use of an electron's physical characteristic (current).

Electrons "jump," and the hotter the environment, the

more frequently and further they do so. Enough

electrons can "jump" over the insulating layer in a

transistor, for example, to switch it from logical 1 to

0, if a device becomes too hot. This leads to a flaw.

Due to the frequency of temperature-related

device failures, temperature sensors are now

incorporated into most modern electronics, causing

them to shut down when they become too hot. By

disconnecting the temperature sensor, a perpetrator

can avoid detection. Another approach would be to

fast change the device's temperature from extremely

high to extremely low, resulting in an average

temperature that is reasonable but faults during the

extremes of the cycles.

A type-confusion attack is on the Java virtual

machine (shown in Figure 4}. At initially, the

memory was filled with little arrays (say of size one).

It is typically impossible to access one of the memory

regions using a pointer to another region because the

Java Virtual Machine is type safe. The researchers

heated the device's memory chip with a 50W light

bulb in order to flip some of the bits and introduce a

type-confusion problem. Because of this, a tiny

number of the data structures that described the arrays

in memory suddenly had incorrect values (for

example, changed from size* = 1 to *size = 20).

Currently, the attackers have read and write access to

some impacted data structures since they contain a

header from a separate data structure. The attackers

gained access to the whole memory of the system by

altering the second data structure's header to any

value.

ii. Chinese Remainder Theorem

Before going through the mechanism of fault attacks,

an important number theory theorem, Chinese

Remainder Theorem, is going to be explained, as it is

much involved in the mechanism of the attack.

The idea is that if we know both 𝑥 (mod 𝑝)

and 𝑥 (mod 𝑞) then we can easily calculate 𝑥 (mod

𝑛). So, given a message 𝑀 , calculate 𝑀𝑝 and 𝑀𝑞 :

𝑀𝑝 = 𝐶𝑑 (mod  𝑛) = 𝐶𝑑 (mod  𝑝), 𝑀𝑞   =   𝐶𝑑 (mod 

𝑛) = 𝐶𝑑 (mod  𝑞). To combine the values, we do:

𝑀  = CRT(𝑀𝑝 ,𝑀𝑞)= 𝑀𝑝 × 𝑞 × (𝑞−1 (mod 𝑝)) +

𝑀𝑞 × 𝑝  × (𝑝−1 (mod 𝑞)). It is easily provable that 𝑀

(mod 𝑝) = 𝑀𝑞 and 𝑀 (mod 𝑞) = 𝑀𝑝 , so by the

Chinese Remainder Theorem, this value must be

equal to 𝑀 [13].

Figure 4: A light bulb flipping memory bits filled with safe

Java structures

iii. Mechanism

The attacker has a decryption box (known plaintext

scenario) with public key 𝑛 and would like to

recover 𝑑 (the private key). The attacker is also

aware that CRT is being used for decryption by the

decryption box. Let's finally assume that the attacker

can introduce any kind of flaw into the decryption

procedure.

The attacker first gets 𝑀  = 𝑀𝑝 × 𝑞 (𝑞−1

(mod 𝑝)) + 𝑀𝑞 × 𝑝 (𝑝−1 (mod 𝑞)) through the

regular decryption process. Then, the attacker

primes the device to re-calculate the message from

the same cipher, this time injecting a transient fault

during the calculation of 𝑀𝑝, resulting in the device

erroneously producing 𝑀𝑝
′ instead of 𝑀𝑝

′   ≠   𝐶𝑑

(mod 𝑝). The device will then proceed to combine

𝑀𝑝
′ with the correct result of 𝑀𝑞, resulting in: 𝑀′   =

𝑀𝑝
′ × 𝑞 (𝑞−1 (mod 𝑝)) + 𝑀𝑞 × 𝑝 (𝑝−1 (mod 𝑞)).

Now the attacker can calculate the value of 𝑀 − 𝑀′:

[𝑀 = 𝑀𝑝 × 𝑞 (𝑞−1 (mod 𝑝)) + 𝑀𝑞 × 𝑝(𝑝−1 (mod

𝑞))] - [𝑀𝑝
′ × 𝑞 (𝑞−1 (mod 𝑝)) + 𝑀𝑞 × 𝑝 × (𝑝−1

(mod 𝑞))]. Finally, calculating the gcd of 𝑛 and 𝑀 −

𝑀′ yields: 𝑔𝑐𝑑 (𝑛, 𝑀 − 𝑀′) = 𝑔𝑐𝑑 (𝑝𝑞, (𝑀_𝑝 −

𝑀𝑝
′) × 𝑞 × (𝑞−1 (mod 𝑝))) = 𝑞

The greatest common divisor of 𝑛 and

anything can be only 𝑝, 𝑞, 𝑛 or 1. On the other hand,

𝑀𝑝 and 𝑀𝑝
′ can never be multiples of 𝑝, otherwise,

both would equal 0. So, by that reasoning,

 𝑔𝑐𝑑 (𝑝𝑞, (𝑀_𝑝 − 𝑀𝑝
′) × 𝑞 × (𝑞−1 (mod 𝑝))) must

equal 𝑞, and thus we have cracked the cipher using a

single fault attack [12].

iv. Countermeasures

Usually, the fault attacks cannot be stopped at the

cipher design level. The responsibility of ensuring

that an adequate countermeasure is implemented falls

on the circuit implementer/secure software developer

rather than the cipher creator. Therefore, as we

discuss here, countermeasures are created and

examined independently of ciphers. We exclude the

combined fault and side channel countermeasures for

the sake of simplicity. To achieve protection against

FA, all solutions that reduce fault effect make use of

some redundancy.

In 2008, Vigilant put up an effective strategy

for safeguarding modular exponentiation from fault

attacks and applied this finding to the instance of

CRT-RSA. Vigilant's countermeasure appears to be

among the most cost-effective strategies considering

all embedded device limits when compared to other

methods. In fact, this solution does not require the

public exponent, precomputation, additional

arguments, or personalization that is incompatible

with the JavaCard standard. Additionally, the

countermeasure's performance and memory usage

overhead is tolerable [16].

Vigilant’s generic secure exponentiation:

The principle of Vigilant’s secure exponentiation

method consists in computing 𝑚𝑑 mod 𝑁 in ℤ𝑁𝑟2

where 𝑟 is a small random integer coprime with 𝑁.

Then the base 𝑚 is transformed into 𝑚′ such that:

𝑚′ ≡ {
𝑚 mod 𝑁

1 + 𝑟 mod 𝑟2

This implies that:

𝑆′ = 𝑚′𝑑 𝑚𝑜𝑑 𝑁𝑟2 ≡ { 𝑚𝑑 mod 𝑁
1 + 𝑑𝑟 mod 𝑟2

Therefore, a consistency check of the result 𝑆′ can

be performed modulo 𝑟2 from 𝑑 and 𝑟. If the

verification 𝑆’ = 1 + 𝑑𝑟 𝑚𝑜𝑑 𝑟2 is successful,

then the result 𝑆 = 𝑆’ 𝑚𝑜𝑑 𝑁 is returned.

Vigilant’s application to RSA with CRT:

The application to RSA with CRT perform both

half-exponentiations modulo 𝑝𝑟2 and 𝑞𝑟2, which is

the basic idea to ensure that there were no errors

during the computation of 𝑆𝑝 or 𝑆𝑞 during the

recombination. Therefore, it is possible to carry out

the last consistency check after recombination. A

more detailed explanation of the procedures is

provided in Algorithm 1, which is an exact replica

of Vigilant's scheme [17].

Algorithm 1: Vigilant’s CRT-RSA scheme

Inputs: The message to sign 𝑚, the private key

(𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞 , 𝑖𝑞), a 32-bit random integer 𝑟, four 64-

bit random integers 𝑅1, 𝑅2, 𝑅3, and 𝑅4

Outputs: 𝑆 = 𝑚𝑑 (mod 𝑁)

Steps:

1. p′  = p r2 ,  mp  = m (mod p′) 

2. 𝑖𝑝𝑟 = 𝑝−1 (𝑚𝑜𝑑 𝑟2), β𝑝 = 𝑝𝑖𝑝𝑟 and α𝑝 = 1 −

β𝑝 (𝑚𝑜𝑑 𝑝′)

3. 𝑚�̂� = α𝑝𝑚𝑝 + β𝑝(1 + 𝑟) (𝑚𝑜𝑑 𝑝′)

4. if (𝑚�̂� ≠ 𝑚 (𝑚𝑜𝑑 𝑝)) then

5. return error

6. 𝑑𝑝
′ = 𝑑𝑝 + 𝑅1(𝑝 − 1)

7. 𝑆𝑝𝑟 = 𝑚𝑝

𝑑𝑝
′̂
 (mod 𝑝′)

8. if (𝑑𝑝
′ ≠ 𝑑𝑝 (𝑚𝑜𝑑 𝑝 − 1) then

9. return error

10. if (β𝑝𝑆𝑝𝑟 ≠ β𝑝(1 + 𝑑𝑝
′ 𝑟) (𝑚𝑜𝑑 𝑝′)) then

11. return error

12. 𝑆𝑝
′ = 𝑆𝑝𝑟 − β𝑝(1 + 𝑑𝑝

′ 𝑟 − 𝑅3)

13. 𝑞′ = 𝑞𝑟2, 𝑚𝑞 = 𝑚 (𝑚𝑜𝑑 𝑞′)

14. 𝑖𝑞𝑟 = 𝑞−1 (𝑚𝑜𝑑 𝑟2), β𝑞 = 𝑞𝑖𝑞𝑟 and α𝑞 = 1 −

β𝑞 (𝑚𝑜𝑑 𝑞′)

15. 𝑚�̂� = α𝑞𝑚𝑞 + β𝑞(1 + 𝑟) (𝑚𝑜𝑑 𝑞′)

16. if (𝑚�̂� ≠ 𝑚 (𝑚𝑜𝑑 𝑞)) then

17. return error

18. if (𝑚𝑝 (𝑚𝑜𝑑 𝑟2) ≠ 𝑚𝑞 (𝑚𝑜𝑑 𝑟2)) then

19. return error

20. 𝑑𝑞
𝑦

= 𝑑𝑞 + 𝑅2(𝑞 − 1)

21. 𝑆𝑞𝑟 = 𝑚𝑞

𝑑𝑞
′̂
 (𝑚𝑜𝑑 𝑞′)

22. if (𝑑𝑞
𝑣 ≠ 𝑑𝑞 (𝑚𝑜𝑑 𝑞 − 1)) then

23. return error

24. if (β𝑞𝑆𝑞𝑟 ≠ β𝑞(1 + 𝑑𝑞
′ 𝑟) (𝑚𝑜𝑑 𝑞′))then

25. return error

26. 𝑆𝑞
′ = 𝑆𝑞𝑟 − β𝑞(1 + 𝑑𝑞

′ 𝑟 − 𝑅4)

27. 𝑆 = 𝑆𝑞
′ + 𝑞(𝑖𝑞(𝑆𝑝

′ − 𝑆𝑞
′) (𝑚𝑜𝑑 𝑝′))

28. 𝑁 = 𝑝𝑞

29. if (𝑁[𝑆 − 𝑅4 − 𝑞𝑖𝑞(𝑅3 − 𝑅4)] ≠

0 (𝑚𝑜𝑑 𝑁𝑟2))then

30. return error

31. if (𝑞𝑥�̇� ≠ 1 (𝑚𝑜𝑑 𝑝)) then

32. return error

33. return 𝑆 (𝑚𝑜𝑑 𝑁)

This method has the following advantages:

• The only requirements for the random integer r are

that it be odd and have sufficient entropy.

• Precomputation is not required.

• Only p, q, 𝑑𝑝 , 𝑑𝑞, 𝑖𝑞 and the input message m are

required for the calculation

• The countermeasure's implied overhead for

performance and memory use is reasonable.

V. Conclusion

Since its invention, the RSA algorithm has become

the most implemented communication and digital

signature algorithm, due to being the first

asymmetric-key algorithm. While this prominence of

the RSA algorithm resulted in it being the center of

attacks, one type of these attacks, implementation

attacks, also affects algorithms related to the RSA

algorithm. However, these multitudinous attacks

have induced the generation of better variations of the

RSA algorithm. This review paper aimed to

scrutinize the potentiality of using the algorithm

presently without facing any lack of security or

performance. The paper has exhaustively

investigated the aspects of two of the most popular

implementation attacks: timing attacks and fault

attacks, successfully observing improved RSA

counterparts that are secured against these attacks.

However, the critical question of using the RSA in

the current time remains. As the paper addressed only

the counterpart of the RSA against each of those two

attacks, no variation of RSA that can simultaneously

resist those two types of implementation attacks was

clarified. Hence, more research is required.

VI. References

[1] W. Trappe and L. C. Washington,

Introduction to cryptography: with coding theory,

2nd ed. Upper Saddle River, N.J: Pearson Prentice

Hall, 2005.

[2] J. Katz and Y. Lindell, Introduction to modern

cryptography. Boca Raton: Chapman \& Hall/CRC,

2008.

[3] J. F. Dooley, History of cryptography and

cryptanalysis: codes, ciphers, and their algorithms.

New York, NY: Springer Berlin Heidelberg, 2018.

[4] W. Diffie and M. Hellman, “New directions

in cryptography,” IEEE Trans. Inform. Theory, vol.

22, no. 6, pp. 644–654, Nov. 1976, doi:

10.1109/TIT.1976.1055638.

[5] D. Boneh, "Twenty Years of Attacks on the

RSA Cryptosystem," Notices of the American

Mathematical Society, vol. 46, issue 2, Feb 1999.

[6] T. Popp, “An introduction to implementation

attacks and countermeasures,” in 2009 7th

IEEE/ACM International Conference on Formal

Methods and Models for Co-Design, Cambridge,

MA, USA, Jul. 2009, pp. 108–115. doi:

10.1109/MEMCOD.2009.5185386.

[7] C. Gidney and M. Ekerå, “How to factor 2048

bit RSA integers in 8 hours using 20 million noisy

qubits,” Quantum, vol. 5, p. 433, Apr. 2021, doi:

10.22331/q-2021-04-15-433.

[8] P. C. Kocher, “Timing Attacks on

Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems,” in Advances in Cryptology —

CRYPTO ’96, vol. 1109, N. Koblitz, Ed. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1996, pp.

104–113. doi: 10.1007/3-540-68697-5_9.

[9] W. Schindler, “Exclusive Exponent Blinding

May Not Suffice to Prevent Timing Attacks on

RSA,” in Cryptographic Hardware and Embedded

Systems -- CHES 2015, vol. 9293, T. Güneysu and

H. Handschuh, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2015, pp. 229–247. doi:

10.1007/978-3-662-48324-4_12.

[10] S. Pradhan, "A New Design to Improve the

Security Aspects of RSA Cryptosystem,"

International Journal of Computer Science and

Business Informatics, vol. 3, issue 1, Jul 2013

[11] M. Mumtaz and L. Ping, “Forty years of

attacks on the RSA cryptosystem: A brief survey,”

Journal of Discrete Mathematical Sciences and

Cryptography, vol. 22, no. 1, pp. 9–29, 2019.

[12] Sung-Ming Yen, Seungjoo Kim, Seongan

Lim, and Sang-Jae Moon, “RSA speedup with

Chinese remainder theorem immune against

hardware fault cryptanalysis,” IEEE Transactions on

Computers, vol. 52, no. 4, pp. 461–472, 2003.

[13] Y. Zheng and T. Matsumoto, "Breaking Real-

World Implementations of Cryptosystems by

Manipulating their Random Number Generation",

Pre-proc. 1997 Symp. Cryptography and Information

Security, 29 Jan.-1 Feb. 1997.

[14] D.P. Maher, "Fault Induction Attacks Tamper

Resistance and Hostile Reverse Engineering in

Perspective", Financial Cryptography, pp. 109-121,

1997.

[15] E. Biham and A. Shamir, "Differential Fault

Analysis of Secret Key Cryptosystems", Advances in

Cryptology CRYPTO '97, pp. 513-525, 1997.

[16] J.-S. Coron, C. Gira, N. Morin, G. Piret, and

D. Vigilant, “Fault attacks and countermeasures on

vigilant's RSA-CRT algorithm,” 2010 Workshop on

Fault Diagnosis and Tolerance in Cryptography,

2010.

[17]] D. Vigilant. RSA with CRT: A New Cost-

Effective Solution to Thwart Fault Attacks. In CHES

2008, vol. 5154 of LNCS, pp. 130–145. Springer,

2008.

