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Abstract 

RSA, being the first asymmetric-key algorithm, has caused an evolution in the 

science of cryptography, becoming one of the most used encrypting algorithms. 

These outcomes have resulted in the algorithm receiving a vast number of attacks. 

One type of these attacks, implementation attacks, poses a crucial threat to RSA. 

Moreover, due to having other algorithms (e.g., Diffie-Hellman key exchange and 

elliptic curves algorithm) that are formulated nearly similar to RSA, as well as the 

mechanisms of the implementation attacks, the dangers of these attacks are found 

in these other algorithms too. Since the popularity of RSA, most of the research, 

which provides an improved counterpart of the algorithm secured against this 

attack, is conducted for RSA. This paper examines two of the most known 

implementation attacks— timing attacks, and fault attacks— analyzing their 

methodology and investigating methods to counter them. Finally, the paper 

evaluates the possibility of having an improved variation of RSA that is feasible to 

be used in the present.    

 

I. Introduction 

Cryptography, the science of establishing techniques 

to ensure secure communication [1], is well thought-

out as one of the human necessities. In fact, the 

initiation of cryptography is thought to be dated back 

to approximately 1900 B.C.; some Egyptian scribes 

formulated a deviant type of hieroglyphs as a form of 

communication that they only can understand [2]. 

Throughout history, earlier forms of 

cryptography were generally used only for military 

and political purposes, using non-advanced 

techniques for ciphering messages— yet it was 

decisive such as the Enigma machine (depicted in 

Figure 1)— requiring a single key to revert the 

ciphering. However, with the rise of modern 

machines, cryptography began revolutionizing and 

started to come out publicly to ensure the privacy of 

the communication, having the risk of the key being 

Figure 1: Symmetric-key Enigma Machine 



 

exposed while being transferred increased, thus 

another technique for cryptography was needed [3]. 

In 1976, Whitfield Diffie and Martin Hellman 

proposed a new method for key distribution. Diffie 

and Martin prospected replacing the single 

encryption-decryption key with two keys, one for 

encrypting, which is transferred and can be known to 

the public, while the other for decrypting, which is 

only known by the receiver, calling it asymmetric-

key algorithm. Nevertheless, they faced a critical 

problem: not being able to implement the idea in a 

working algorithm [4]. 

A year later, in 1977, Ronald Rivest, Adi 

Shamir, and Leonard Adleman invented a working 

asymmetric-key algorithm, naming it RSA for the 

first letter of their names [3]. The RSA algorithm is 

recognized as a considerable advancement in 

cryptography, theorizing the field of modern 

cryptography and becoming the first asymmetric-key 

algorithm. 

Being considered the most used encryption 

algorithm, the number of attacks done in an attempt 

to break the RSA algorithm is numerous. Attacks can 

be mainly classified into four types: elementary 

attacks, which are basic attacks that exploit the 

flagrant nature of the algorithm; low private exponent 

attacks, which are attacks that can break the systems 

that use low-value private key; low public exponents 

attacks, which are, similar to low private exponent 

attacks, attacks that can break systems that use low-

value public key; and finally implementation attacks, 

which are attacks that aim at the blunders of the 

implementation of the algorithm [5]. 

Implementation attacks are the most powerful 

and complex, since they aim to exploit the system’s 

application to the algorithm. Hence, they are often 

intricately designated, involving many mathematical 

attacks [6]. Examples of implementation attacks are 

timing attacks and fault attacks (which are our sole 

focus in this paper). Nevertheless, this type of attacks 

had a great role in the development of the RSA 

algorithm. As with the proper utilization of the fields 

of number theory, came better variations and 

implementations of the RSA algorithm, providing a 

counterpart for the earlier implementation attacks. 

The following paper will describe 

comprehensively two of the most used 

implementation attacks: timing attacks and fault 

attacks, thoroughly explaining their idea and 

implementations with going through their 

counterparts and the number theory behind them. 

 

II.  RSA Algorithm 

 

i. Overview 

RSA is an asymmetrical encryption algorithm, 

meaning two keys are generated and used. The first 

key, the private key, is kept secret by the person 

generating the keys. The second key, the public key, 

can be freely distributed to anyone. When data is 

encrypted by one key, only the other key can decrypt 

it. For example, if I have my RSA keys set up and you 

have my public key, you can send me a message 

that’s encrypted with my public key and only I can 

decrypt the message (because I hold my private key). 

Similarly, it can be used to prove authenticity. If I 

have a message that I want to prove is from me I can 

encrypt it with my private key. Now, anybody who 

has my public key can prove that I sent the message. 

This is called “message signing”. These two concepts 

are combined while using the RSA algorithm to 

ensure that the message is coming from this sender 

and only the receiver can decrypt it. [11]. The main 

scheme of the RSA algorithm is based on how 

challenging is to prime factor huge numbers, even 

with the existing computational power and 

algorithms, it would take for an average workstation 

computer with two running CPUs roughly 5000 hours 

(208 days) to prime factor a 156-digit number [2]. 

ii. Mechanism 

Suppose Bob and Alice want to communicate, but 

they have never met before and neither of them wants 

to spend the time to send a courier with a key. As a 



 

result, Eve might possibly learn everything Alice 

communicates to Bob. However, a message could 

still be transmitted so that Bob can read it, but Eve 

cannot; This would be impossible using any of the 

basic symmetric-key techniques. Diffie and 

Heilman's seminal study first made the feasibility of 

the current system known as a public key 

cryptosystem; However, they lacked a working 

implementation. at the time Several strategies were 

put forth during the following few years. The most 

effective one was introduced by Rivest, Shamir, and 

Adleman in 1977 and is known as the RSA algorithm. 

It is based on the point that the factorization of 

numbers into their prime components is difficult. 

The RSA algorithm operates as follows, in 

order to create Bob chooses two unique huge primes 

𝑝  and 𝑞  then multiplies them 𝑛 =  𝑝𝑞 . He also 

chooses an encryption exponent 𝑒  such that 

gcd{ 𝑒, 𝑝 − 1 × 𝑞 − 1} = 1.  While keeping the 

values of 𝑝 and 𝑞 secret, Bob sends Alice the pair 𝑛 

and 𝑒. Now Alice can communicate with Bob safely 

without ever needing to know 𝑝 and 𝑞. Alice uses the 

letter 𝑚 to convey her message. If 𝑚 is greater than 

𝑛, she divides the message into blocks that are each 

less than 𝑛 . Alice then computes 𝐶 = 𝑚𝑒  (mod 𝑛) 

and sends 𝐶  to Bob. Since Bob knows 𝑝 and 𝑞, he 

can compute 𝑝 − 1 and 𝑞 − 1, therefore he can find 

the decryption exponent 𝑑  with 𝑑𝑒 =  1  (mod 𝑝 −

1 × 𝑔 −  1). As 𝑚 = 𝐶𝑑 (mod 𝑛), Bob can read the 

message.  

The algorithm can be summarized as follows: 

1- Bob calculates 𝑛 =  𝑝𝑞 using two secret 

prime numbers 𝑝 and 𝑞. 

 

2- Bob chooses 𝑒 with gcd{ 𝑒, 𝑝 − 1 × 𝑞 −

1} = 1. 

 

3-  Bob computes 𝑑 with 𝑑𝑒 =  1 (mod 𝑝 −

1 × 𝑔 −  1) 

 

4- Bob makes 𝑛 and 𝑒 public and keeps 𝑝, 𝑞 

and 𝑑 secret. 

 

5- Alice encrypts 𝑚 as 𝐶 = 𝑚 (mod 𝑛) and 

sends 𝐶 to Bob. 

 

6- Bob decrypts 𝑚 by computing 𝑚 = 𝐶𝑑 (mod 

𝑛). 

 

III. Timing Attacks 

Suppose that you could interfere in the middle of a 

system (a smartcard for example) that uses the RSA 

algorithm. Due to the design of this algorithm, you 

would be able to obtain only 𝐶 and the public keys 𝑝 

and 𝑞 , where, as explained in Section II, you can 

calculate the message 𝑀  using  𝑀  ≡  C𝑑 (mod 𝑁 ). 

Yet, the only way to get the private key 𝑑 is through 

brute-forcing or prime factoring 𝑛, which would take 

300 trillion years for a 2048-bits RSA algorithm [7]. 

i. Mechanism 

Paul Kocher proposed a type of attack that could 

break this encryption in [8]. By measuring the time 

needed to perform decryption and then perform series 

of calculation to get the private key 𝑑. This type of 

attack is now known as Timing attack. 

First of all, to explain how the attack works, 

we will use the earliest form of the attack which is 

found in [8] and [5]. 

Let 𝑑 in its binary form  

𝑑 = ∑ 2𝑖𝑑𝑖 where 𝑑𝑖

𝑛

𝑖=0

∈ {0,1} 

applying it in 𝑀 = 𝐶𝑑 (mod 𝑁),  

𝐶 = ∏ 𝑀2𝑖𝑑𝑖

𝑛

𝑖=0

 

Now using the repeated squaring algorithms: 

 



 

   Set 𝑧  equal to 𝐶  and 𝑀  equal to 1. Then for 𝑖 =

 0, … , 𝑛 do the following: 

   1- If 𝑑𝑖 = 1, Set 𝑀 to 𝑀𝑧 (mod 𝑁) 

   2- Set 𝑧 to 𝑧2 (mod 𝑁) 

   Now, 𝑀 has the value of 𝐶𝑑 (mod 𝑁) 

This will lead the equation to compute in less than or 

equal to 2𝑛 times, instead of 𝑑 times [5]. 

Now to apply the attack, let the smartcard 

generate a number of messages 𝑘 (i.e., 𝐶1, … , 𝐶𝑘) and 

measure the time 𝑇𝑖 needed to decrypt each message. 

If 𝑑 is odd, then 𝑑0 = 1, 𝑀 =  𝐶, and 𝑧 = 𝐶2 (mod 

𝑁). Now if 𝑑1 = 1, the smartcard computes 𝑀𝑧 =

𝐶 × 𝐶2 (mod 𝑁). Else if 𝑑1 = 0, it does not. Let 𝑡𝑖 be 

the time needed to compute 𝐶𝑖 × 𝐶𝑖
2 (mod 𝑁). Since 

the time to compute 𝐶𝑖 × 𝐶𝑖
2 (mod 𝑁) depends on the 

value of 𝐶𝑖  (calculating modulus takes different 

amount of time depending on the value of the 

number, hence each 𝑡𝑖 takes different amount of time 

from each other. 

As Kocher perceived, in [8], depicted in 

Figure 2 if 𝑑1 = 0, then 𝑡𝑖  and 𝑇𝑖  are independent 

from each other. While if 𝑑1 =  1 , 𝑡𝑖  and 𝑇𝑖  are 

correlated to each other. Hence, Kocher could 

determine if the value of 𝑑1 is 0 or 1 depending on the 

correlation of 𝑡𝑖 and 𝑇𝑖. By this way, he can continue 

determining 𝑑2 , 𝑑3 , ..., 𝑑𝑛 . Then by reverting the 

binary representation, Kocher could finally get the 

decryption key 𝑑. 

 

ii. Countermeasures 

A simple way to counter timing attacks is by giving 

all the numbers the same amount of time to do 

modular exponentiation (for example by delaying all 

the smaller numbers to have the same duration as the 

largest one), yet this would decrease the performance 

time of the algorithm. Another method is by using 

Blinding. Before calculating 𝑀 =  𝐶𝑑  (mod 𝑁 ), 

choose  random number 𝑟  and 𝑠  such that 𝑠 =  𝑟𝑒 

(mod 𝑛); compute 𝑋 =  𝐶𝑠  (mod 𝑁 ) and 𝑌 =  𝑋𝑑 

(mod 𝑁 ), hence 𝑀 =  𝑌/𝑟  (mod 𝑛 ). Here the 

attacker can not use a timing attack, because the 

exponentiation process is done on an unknown 

random value 𝑋 , instead of the known value 𝐶 ; 

However, Werner Schindler shows in [9] that an 

improved variation of timing attacks can still break a 

blinding RSA algorithm. 

[10] introduces a better variation for RSA, 

which resists most of the attacks (including timing 

attacks); this algorithm works as follows: 

Suppose you have 𝐴 wants to send a message to 𝐵. 

First: 𝐴 will prepare public keys the same way as the 

standard RSA algorithm. 

Second: 𝐵  will do as following to encrypt the 

message: 

1- Obtain 𝐴's public keys (𝑁, 𝑒) 

2- Represent the message in 𝑀 such that 𝑀 <  𝑁 

3- Select a random integer 𝑘 such that gcd{k,  n} =  1 

4- Compute 𝑐1 =  𝑘𝑒 (mod 𝑁) 

5- Compute 𝑐2 =  𝑚{𝑒}𝑘 (mod 𝑁) Figure 2: Graph showing computational power when 

𝑑𝑖 =  0 and 𝑑𝑖 =  1 



 

6- Send (𝑐1, 𝑐2) to 𝐴 

Finally, 𝐴  should do the following to decrypt the 

message: 

1- Use private key 𝑑 and compute 𝑐1 = 𝑘 (mod 𝑁) 

2- Use the Euclidean algorithm and calculate the 

integer 𝑠 such that 𝑠𝑘 ≡ 1 (mod 𝑁) 

3- Compute 𝑐2𝑠 = (𝑚𝑒𝑘)𝑠 = 𝑚𝑒(𝑘𝑠) = 𝑚𝑒  (mod 

𝑁) 

4- Use the private key 𝑑  to compute (𝑚𝑒)𝑑 =

𝑚 (mod 𝑁) 

Using this algorithm, instead of the standard 

RSA algorithm, will provide more secure 

communication, as this improved variation counters 

timing attacks, since using 𝑘  in encryption and 

decryption makes it challenging to distinguish 

between the time is taken for 𝑘 and the time for the 

public key 𝑒 or the private key 𝑑. 

 

IV.  Fault Attacks 

From electrical devices, fault attacks retrieve secrets 

by taking advantage of hardware flaws. Boneh, 

DeMillo, and Lipton introduced fault-based attacks 

against CRT-RSA in the late 1990s. In situations 

when the message padding function is deterministic, 

these techniques factor the signer's modulus. The 

attack does not apply when the message is only 

partially known, such as when messages contain 

some randomness that can only be recovered when a 

valid signature is verified. A fault attack is an assault 

on a physical, electronic device in order to produce 

errors that cause the system to lose security (such as 

key recovery, an increase in an electronic purse 

balance, the acceptance of a false signature, or PIN 

code recovery) [12]. 

A fault attack is a live attack that 

compromises cryptographic hardware and allows 

secret information to be extracted. Attackers actively 

participate in fault assaults by providing other inputs 

in addition to the main input, such as fuzzing, 

radiation, heat, and vibration. By doing these, 

additional (typically incorrect) outputs are found that 

can provide further details about the algorithm and/or 

the secret. This procedure is explained in Figure 3 

 

i. Fault Methods 

Power supply attacks: In case if the gadget isn't 

powerful enough, CMOS transistors are driven by 

power in electronic devices. If the device is 

marginally underpowered, some of the transistors 

may not be switched, leading to inaccurate 

computations. If the device is even slightly 

underpowered, it may have trouble entering an 

operational state (a boot loop), or it may even become 

completely broken. Injecting power spikes into the 

power supply is another attack strategy (to a similar 

effect).[1] 

A device will become unstable and introduce 

problems if its power supply is underpowered or 

overpowered since some sections of a device are 

often more sensitive to it than others. 

The most obvious situation for such an attack 

is when the device is owned by or under the attacker's 

control, as may be the case if they are looking at their 

own set-top box, etc. In such instances, the attacker is 

free to provide the gadget with any amount of power 

they desire. 

Figure 3: A schematic diagram of fault attacks and leakage 

types 



 

Clock/Timing attacks: The clock, which is typically 

a bus shared by many of the system's components, 

synchronizes the propagation of calculations through 

the system; in other words, all inputs are prepared at 

the beginning, and when there is a rising edge on the 

clock bus, they begin propagating throughout the 

various computational components. When all 

calculations are complete, they all wait for the 

following rising edge on the clock bus to go on to the 

following phase. A rising edge would be injected on 

the clock bus at a random time during a clock 

glitching assault. In this manner, the device will be 

defective (unstable) since only part of the 

computations will have finished by that time while 

others are still being processed. 

Temperature attacks: This attack strategy makes 

use of an electron's physical characteristic (current). 

Electrons "jump," and the hotter the environment, the 

more frequently and further they do so. Enough 

electrons can "jump" over the insulating layer in a 

transistor, for example, to switch it from logical 1 to 

0, if a device becomes too hot. This leads to a flaw. 

Due to the frequency of temperature-related 

device failures, temperature sensors are now 

incorporated into most modern electronics, causing 

them to shut down when they become too hot. By 

disconnecting the temperature sensor, a perpetrator 

can avoid detection. Another approach would be to 

fast change the device's temperature from extremely 

high to extremely low, resulting in an average 

temperature that is reasonable but faults during the 

extremes of the cycles. 

A type-confusion attack is on the Java virtual 

machine (shown in Figure 4}. At initially, the 

memory was filled with little arrays (say of size one). 

It is typically impossible to access one of the memory 

regions using a pointer to another region because the 

Java Virtual Machine is type safe. The researchers 

heated the device's memory chip with a 50W light 

bulb in order to flip some of the bits and introduce a 

type-confusion problem. Because of this, a tiny 

number of the data structures that described the arrays 

in memory suddenly had incorrect values (for 

example, changed from size* = 1 to *size = 20). 

Currently, the attackers have read and write access to 

some impacted data structures since they contain a 

header from a separate data structure. The attackers 

gained access to the whole memory of the system by 

altering the second data structure's header to any 

value. 

 

ii. Chinese Remainder Theorem 

Before going through the mechanism of fault attacks, 

an important number theory theorem, Chinese 

Remainder Theorem, is going to be explained, as it is 

much involved in the mechanism of the attack. 

The idea is that if we know both 𝑥 (mod 𝑝) 

and 𝑥 (mod 𝑞) then we can easily calculate 𝑥 (mod 

𝑛). So, given a message 𝑀 , calculate 𝑀𝑝  and 𝑀𝑞 :  

𝑀𝑝 = 𝐶𝑑  (mod  𝑛) = 𝐶𝑑  (mod  𝑝), 𝑀𝑞   =   𝐶𝑑  (mod  

𝑛) = 𝐶𝑑  (mod  𝑞). To combine the values, we do: 

𝑀  = CRT(𝑀𝑝 ,𝑀𝑞 )= 𝑀𝑝  × 𝑞 × (𝑞−1  (mod 𝑝 )) + 

𝑀𝑞 × 𝑝  × (𝑝−1 (mod 𝑞)). It is easily provable that 𝑀 

(mod 𝑝 ) = 𝑀𝑞  and 𝑀  (mod 𝑞 ) = 𝑀𝑝 , so by the 

Chinese Remainder Theorem, this value must be 

equal to 𝑀 [13]. 

 

Figure 4: A light bulb flipping memory bits filled with safe 

Java structures 



 

iii. Mechanism 

The attacker has a decryption box (known plaintext 

scenario) with public key 𝑛 and would like to 

recover 𝑑 (the private key).  The attacker is also 

aware that CRT is being used for decryption by the 

decryption box. Let's finally assume that the attacker 

can introduce any kind of flaw into the decryption 

procedure. 

The attacker first gets 𝑀  = 𝑀𝑝 × 𝑞 (𝑞−1 

(mod 𝑝)) + 𝑀𝑞 × 𝑝 (𝑝−1 (mod 𝑞)) through the 

regular decryption process. Then, the attacker 

primes the device to re-calculate the message from 

the same cipher, this time injecting a transient fault 

during the calculation of 𝑀𝑝, resulting in the device 

erroneously producing 𝑀𝑝
′  instead of 𝑀𝑝

′   ≠   𝐶𝑑 

(mod 𝑝). The device will then proceed to combine 

𝑀𝑝
′  with the correct result of 𝑀𝑞, resulting in: 𝑀′   =

𝑀𝑝
′ × 𝑞 (𝑞−1 (mod 𝑝)) + 𝑀𝑞 × 𝑝 (𝑝−1 (mod 𝑞)). 

Now the attacker can calculate the value of 𝑀 − 𝑀′: 

[𝑀 = 𝑀𝑝 × 𝑞 (𝑞−1 (mod 𝑝)) + 𝑀𝑞 × 𝑝(𝑝−1 (mod 

𝑞))] - [𝑀𝑝
′ × 𝑞 (𝑞−1  (mod 𝑝)) + 𝑀𝑞 × 𝑝 × (𝑝−1  

(mod 𝑞))]. Finally, calculating the gcd of 𝑛 and 𝑀 −

𝑀′ yields: 𝑔𝑐𝑑 (𝑛, 𝑀 − 𝑀′)  =   𝑔𝑐𝑑 (𝑝𝑞, (𝑀_𝑝 −

𝑀𝑝
′ )  × 𝑞 × (𝑞−1 (mod 𝑝))) = 𝑞 

The greatest common divisor of 𝑛  and 

anything can be only 𝑝, 𝑞, 𝑛 or 1. On the other hand, 

𝑀𝑝  and 𝑀𝑝
′  can never be multiples of 𝑝, otherwise, 

both would equal 0. So, by that reasoning, 

 𝑔𝑐𝑑 (𝑝𝑞, (𝑀_𝑝 − 𝑀𝑝
′ )  × 𝑞 × ( 𝑞−1 (mod 𝑝 ))) must 

equal 𝑞, and thus we have cracked the cipher using a 

single fault attack [12]. 

iv. Countermeasures 

Usually, the fault attacks cannot be stopped at the 

cipher design level. The responsibility of ensuring 

that an adequate countermeasure is implemented falls 

on the circuit implementer/secure software developer 

rather than the cipher creator. Therefore, as we 

discuss here, countermeasures are created and 

examined independently of ciphers. We exclude the 

combined fault and side channel countermeasures for 

the sake of simplicity. To achieve protection against 

FA, all solutions that reduce fault effect make use of 

some redundancy. 

In 2008, Vigilant put up an effective strategy 

for safeguarding modular exponentiation from fault 

attacks and applied this finding to the instance of 

CRT-RSA. Vigilant's countermeasure appears to be 

among the most cost-effective strategies considering 

all embedded device limits when compared to other 

methods. In fact, this solution does not require the 

public exponent, precomputation, additional 

arguments, or personalization that is incompatible 

with the JavaCard standard. Additionally, the 

countermeasure's performance and memory usage 

overhead is tolerable [16]. 

Vigilant’s generic secure exponentiation: 

The principle of Vigilant’s secure exponentiation 

method consists in computing 𝑚𝑑  mod 𝑁  in ℤ𝑁𝑟2 

where 𝑟 is a small random integer coprime with 𝑁. 

Then the base 𝑚 is transformed into 𝑚′ such that: 

𝑚′ ≡ {
𝑚   mod 𝑁

1 + 𝑟   mod 𝑟2 

This implies that: 

𝑆′ = 𝑚′𝑑   𝑚𝑜𝑑  𝑁𝑟2 ≡ { 𝑚𝑑   mod 𝑁
1 + 𝑑𝑟   mod 𝑟2 

Therefore, a consistency check of the result  𝑆′ can 

be performed modulo  𝑟2 from 𝑑 and 𝑟. If the 

verification 𝑆’ =  1 + 𝑑𝑟  𝑚𝑜𝑑 𝑟2  is successful, 

then the result 𝑆 = 𝑆’  𝑚𝑜𝑑 𝑁 is returned. 

Vigilant’s application to RSA with CRT: 

The application to RSA with CRT perform both 

half-exponentiations modulo 𝑝𝑟2 and 𝑞𝑟2, which is 

the basic idea to ensure that there were no errors 

during the computation of 𝑆𝑝 or 𝑆𝑞 during the 

recombination. Therefore, it is possible to carry out 

the last consistency check after recombination. A 

more detailed explanation of the procedures is 



 

provided in Algorithm 1, which is an exact replica 

of Vigilant's scheme [17]. 

Algorithm 1: Vigilant’s CRT-RSA scheme 

Inputs: The message to sign 𝑚, the private key 

(𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞 , 𝑖𝑞), a 32-bit random integer 𝑟, four 64-

bit random integers 𝑅1, 𝑅2,  𝑅3, and 𝑅4 

Outputs: 𝑆 = 𝑚𝑑 (mod 𝑁) 

Steps: 

1. p′  = p r2 ,  mp  = m (mod p′)  

2. 𝑖𝑝𝑟 = 𝑝−1  (𝑚𝑜𝑑 𝑟2), β𝑝 = 𝑝𝑖𝑝𝑟 and α𝑝 = 1 −

β𝑝  (𝑚𝑜𝑑 𝑝′) 

3. 𝑚�̂� = α𝑝𝑚𝑝 + β𝑝(1 + 𝑟) (𝑚𝑜𝑑 𝑝′) 

4. if (𝑚�̂� ≠ 𝑚 (𝑚𝑜𝑑 𝑝)) then 

5.  return error 

6. 𝑑𝑝
′ = 𝑑𝑝 + 𝑅1(𝑝 − 1) 

7. 𝑆𝑝𝑟 = 𝑚𝑝

𝑑𝑝
′̂
 (mod  𝑝′) 

8. if (𝑑𝑝
′ ≠ 𝑑𝑝 (𝑚𝑜𝑑 𝑝 − 1) then 

9.  return error 

10. if (β𝑝𝑆𝑝𝑟 ≠ β𝑝(1 + 𝑑𝑝
′ 𝑟) (𝑚𝑜𝑑 𝑝′)) then 

11.  return error 

12. 𝑆𝑝
′ = 𝑆𝑝𝑟 − β𝑝(1 + 𝑑𝑝

′ 𝑟 − 𝑅3) 

13. 𝑞′ = 𝑞𝑟2, 𝑚𝑞 = 𝑚 (𝑚𝑜𝑑 𝑞′) 

14. 𝑖𝑞𝑟 = 𝑞−1 (𝑚𝑜𝑑 𝑟2),   β𝑞 = 𝑞𝑖𝑞𝑟 and α𝑞 = 1 −

β𝑞 (𝑚𝑜𝑑 𝑞′) 

15. 𝑚�̂� = α𝑞𝑚𝑞 + β𝑞(1 + 𝑟)  (𝑚𝑜𝑑 𝑞′) 

16. if (𝑚�̂� ≠ 𝑚  (𝑚𝑜𝑑 𝑞)) then 

17.  return error 

18. if (𝑚𝑝 (𝑚𝑜𝑑 𝑟2) ≠ 𝑚𝑞 (𝑚𝑜𝑑 𝑟2)) then 

19.  return error 

20. 𝑑𝑞
𝑦

= 𝑑𝑞 + 𝑅2(𝑞 − 1) 

21. 𝑆𝑞𝑟 = 𝑚𝑞

𝑑𝑞
′̂
 (𝑚𝑜𝑑 𝑞′) 

22. if (𝑑𝑞
𝑣 ≠ 𝑑𝑞 (𝑚𝑜𝑑 𝑞 − 1)) then 

23.  return error 

24. if (β𝑞𝑆𝑞𝑟 ≠ β𝑞(1 + 𝑑𝑞
′ 𝑟) (𝑚𝑜𝑑 𝑞′))then 

25.  return error 

26. 𝑆𝑞
′ = 𝑆𝑞𝑟 − β𝑞(1 + 𝑑𝑞

′ 𝑟 − 𝑅4) 

27. 𝑆 = 𝑆𝑞
′ + 𝑞(𝑖𝑞(𝑆𝑝

′ − 𝑆𝑞
′ ) (𝑚𝑜𝑑 𝑝′)) 

28. 𝑁 = 𝑝𝑞 

29. if (𝑁[𝑆 − 𝑅4 − 𝑞𝑖𝑞(𝑅3 − 𝑅4)] ≠

0  (𝑚𝑜𝑑 𝑁𝑟2))then 

30.  return error 

31. if (𝑞𝑥�̇� ≠ 1 (𝑚𝑜𝑑 𝑝)) then 

32.  return error 

33.  return 𝑆 (𝑚𝑜𝑑 𝑁) 

This method has the following advantages:  

• The only requirements for the random integer r are 

that it be odd and have sufficient entropy. 

• Precomputation is not required. 

•  Only p, q, 𝑑𝑝 , 𝑑𝑞, 𝑖𝑞 and the input message m are 

required for the calculation 

•   The countermeasure's implied overhead for 

performance and memory use is reasonable. 

  



 

V. Conclusion 

Since its invention, the RSA algorithm has become 

the most implemented communication and digital 

signature algorithm, due to being the first 

asymmetric-key algorithm. While this prominence of 

the RSA algorithm resulted in it being the center of 

attacks, one type of these attacks, implementation 

attacks, also affects algorithms related to the RSA 

algorithm. However, these multitudinous attacks 

have induced the generation of better variations of the 

RSA algorithm. This review paper aimed to 

scrutinize the potentiality of using the algorithm 

presently without facing any lack of security or 

performance. The paper has exhaustively 

investigated the aspects of two of the most popular 

implementation attacks: timing attacks and fault 

attacks, successfully observing improved RSA 

counterparts that are secured against these attacks. 

However, the critical question of using the RSA in 

the current time remains. As the paper addressed only 

the counterpart of the RSA against each of those two 

attacks, no variation of RSA that can simultaneously 

resist those two types of implementation attacks was 

clarified. Hence, more research is required. 
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