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Abstract 

In this study, we delved into the impact of mass and length variations on the chaotic 

behavior of the double pendulum (DP), a classic nonlinear dynamical system. 

While prior studies have examined the effect of initial conditions like amplitude and 

angular velocity on DP chaos, a more quantitative analysis of the critical system 

parameters, mass, and length is necessary. We addressed this gap through 

numerical simulations in MATLAB, generating eight distinct DP configurations by 

independently altering each pendulum arm’s mass and length values relative to a 

control case. We analyzed phase portraits, Poincar´e sections, bifurcation 

diagrams, Lyapunov exponents, and Hamiltonians for each simulation to 

characterize chaos. Our results demonstrated that increasing either mass or length 

amplifies chaotic motions, with the lower pendulum’s properties playing the more 

decisive role. Specifically, a heavier and longer lower pendulum induced greater 

dynamical instability and unpredictability. These results can further enhance our 

understanding of chaos and support the development of real-life applications such 

as robotic arms or self-balancing vehicles by improving their stability, allowing for 

effective control strategies, and conducting sensitivity analyses in dynamical 

systems. 

Keywords: Double pendulum, Chaos theory, Nonlinear systems, Dynamical 

systems, Poincar´e section, Bifurcation diagram, Lyapunov exponent 

 

I. Introduction 

The double pendulum, also known as a chaos 

pendulum, is a simple physical system that exhibits 

rich, dynamic behavior with a strong sensitivity to 

initial conditions [1]. It is a system that comprises of 

another pendulum attached to its end, and its motion 

is governed by a set of coupled ordinary differential 

equations [2]. Despite its apparent simplicity, the 

double pendulum exhibits remarkably chaotic 

behavior and has the potential to yield valuable 

knowledge through investigation. Chaos is typical in 

nonlinear dynamical systems and is characterized by 

its aperiodic behavior in a deterministic system that 

shows sensitive dependence on initial conditions. 

Understanding the chaotic behavior of such systems 

is vital for advancing our knowledge in various fields 

of science and engineering. 

The behavior of the double pendulum is quite 

intriguing, as it shows periodic behavior at low 

energy, transforms to quasi-periodicity at 

intermediate energy level and chaos at a higher 

energy level, and finally again, periodic motion as 

the system’s energy increases further [3]. 



 

Notably, much experimental and numerical research 

into the double pendulum has been conducted, 

focusing on changes in the initial values of variables 

such as amplitude or angular velocity. However, the 

dependence of such systems on mass and length has 

received much less attention, and we aim to address 

this gap with our work. Such a study is essential for 

controlling and optimizing dynamical systems based 

on DP, such as robotic arms or self-balancing 

scooters, resulting in more accurate and effective 

strategies capable of overcoming the chaos in such 

systems. 

In this paper, we will derive the equations of motion 

for the double pendulum using Lagrangian 

mechanics, conduct a simulation in MATLAB, and 

analyze the findings. The results will be represented 

in Phase portrait, Poincare sections, bifurcation 

diagrams, and the Lyapunov characteristic exponent. 

The Lyapunov exponent often describes a dynamical 

system’s chaos. For instance, the system is not 

chaotic if the average Lyapunov exponent value is 

negative. However, if the Lyapunov exponent is 

positive, chaos is evident. 

Our research aims to advance our understanding of 

the complex connections between the double 

pendulum’s mass, length, and chaotic behavior and 

the relationships driving unexpected natural 

phenomena. This study aims to unravel the secrets of 

chaos in the double pendulum and connect the 

theoretical foundation with practical applications, 

bringing us one step closer to a day when 

unpredictable systems may be anticipated with great 

precision and under our control. 

 

II.  Background Information 

 

i. Pendulum 

A single gravity pendulum is a body suspended from 

a fixed point, allowing it to swing back and forth 

while being pulled by gravity. When a pendulum is 

released from its equilibrium position, it experiences 

a restoring force that pulls it back towards the 

equilibrium position. The pendulum converts its 

kinetic energy to gravitational potential energy and 

back again, with the time for one complete cycle 

known as the ”Period.” The period depends mainly 

on the pendulum’s length [4]. 

The simple gravity pendulum is an idealized 

mathematical model of the pendulum [5]. In these 

ideal conditions, with no damping force, the 

pendulum will hypothetically swing forever 

according to the law of conservation of energy. For 

this study’s MATLAB simulation, there will be no 

damping. 

As shown in Figure 1, pendulums are divided into 

two main types: simple and physical. A simple 

pendulum assumes that all its mass is located at the 

furthest point from the pivot, making it ideal for 

calculations but impossible to recreate perfectly in 

real life. In this investigation, we will focus on a 

simple double pendulum. 

 

Figure 1: Comparison between physical pendulum and simple 

pendulum. 

ii. Lagrangian Mechanics 

Lagrangian mechanics is a widely used tool for 

analyzing double pendulums. To simulate the 



 

motion of a double pendulum in MATLAB, we can 

use Lagrangian mechanics. Unlike traditional 

Newtonian mechanics, Lagrangian equations 

revolve around the principle of stationary action. 

This principle states that the path a system takes 

between two points in space and time is the one 

for which the step is stationary [6][7]. The benefit 

of using these equations is that they do not 

require considering the constraint between 

forces, such as the string’s tension. 

Instead of forces, Lagrangian mechanics uses the 

energies present in the system. The equations of 

motion are derived from the Euler-Lagrange 

equation, ensuring the action is minimized. 

Lagrangian mechanics describes a mechanical 

system as a pair (M, L) consisting of a 

configuration space M and a smooth function L 

within that space called a Lagrangian. The 

Lagrangian is a function that summarizes the 

dynamics of the entire system [8]. For many 
systems the Lagrangian is given as follows: 

L = T – V 

where T and V are the kinetic and potential 

energy of the system, respectively. 

A central concept of Lagrangian mechanics is the 

action, which characterizes the trajectory of an 

object in space and time. The action is defined as 

an integral of the Lagrangian over time [9]. The 

following integral gives the action (A) of a specific 
trajectory: 

𝐴 = ∫ 𝐿(𝑇, 𝑉)𝑑𝑡
𝑡2

𝑡1

 

Physical systems tend to move in a specific path 

that minimizes the action, reflecting the principle 

of stationary action. 

The equations of motion in Lagrangian mechanics 

are determined using the Euler-Lagrange 

equation. This fundamental rule describes the 

principle of stationary action. The Euler-Lagrange 
equation is given by: 

𝑑

𝑑𝑡

∂𝐿

∂�̇�
=

∂𝐿

∂𝑥
 

 

These equations describe the system’s evolution 

over time and are fundamental to understanding 

the behavior of mechanical systems. 

iii. Chaos Theory 

Chaos theory is an interdisciplinary field of 

scientific research and a branch of mathematics 

that studies the underlying patterns and 

deterministic principles of dynamical systems. 

These systems were previously believed to have 

entirely random states of disorder and 

irregularity. Chaos theory explains how little 

modifications to one state of a deterministic 

nonlinear system may lead to significant 

variations in a subsequent state. This 

phenomenon is known as the butterfly effect. A 

double pendulum is an example of a chaotic 

system, showing significant sensitivity to initial 
conditions. [10][11][1] 

To understand this phenomenon, it is crucial to 

quantify the chaos in a system. The Lyapunov 

exponent can be used to do so. The Lyapunov 

exponent is a quantity that characterizes the 

divergence of two trajectories with infinitely 

close initial conditions [12][13]. The magnitude 

of the divergence between the two trajectories at 

any point in time is represented as δ(t). δ(t) can 

be quantified as: 

δ(𝑡) ≈ δ0𝑒λ𝑡𝜓 

Here, δ is the Lyapunov exponent. A negative 

Lyapunov exponent would indicate that the 

points will eventually converge to a single value 

with increasing time. A positive Lyapunov 

exponent suggests that the points diverge from 

each other. Therefore, a positive Lyapunov 

exponent implies that the system is sensitive to its 

initial conditions and is hard to predict. 

Conversely, a negative Lyapunov exponent 

represents a non-chaotic system. [14] 

(2) 

(3) 

(4) 

(1) 



 

III. Theory 

As shown in Figure 2, the double pendulum is formed by two simple pendulums with lengths l1 and l2, from 

which hang two spherical container masses: m1 and m2. m1 is the upper mass, and m2 is the lower mass. At 

a certain time, the inextensible strings form angles θ1 and θ2 with respect to the vertical axis [15]. The upper 

end of the top pendulum is pivoted to a fixed point, while the lower end of the same pendulum is connected 

to the top end of the bottom pendulum [16]. 

In this simulation, the double pendulum is idealized to have no damping, and it is handled as a Hamiltonian 

system. Each pendulum is made up of a bob attached to a massless, rigid rod. The first pendulum’s pivot is 
fixed at a point O. There is no friction in any action. 

 

Figure 2: Diagram of the Double Pendulum 

 

As shown in Figure 2, the positions of the bobs are given by: 

                                                 𝑥1 = 𝑙1 sin θ1                                 𝑦1 = −𝑙1 cos θ1                                                                (5) 

                                                 𝑥2 = 𝑙1 sin θ1 + 𝑙2 sin θ2       𝑦2 = −𝑙1 cos θ1 − 𝑙2 cos θ2                                          (6)  

 

To obtain the velocity of the bobs, we differentiate the above quantities with respect to time:  

                                       𝑥1̇ = 𝑙1θ1̇ cos θ1                                                    𝑦1̇ = 𝑙1θ1̇ sin θ1                                                          (7) 

                                       𝑥2̇ = 𝑙1θ1̇ cos θ1 + 𝑙2θ2̇ cos θ2                              𝑦2̇ = 𝑙1θ1̇ sin θ1 + 𝑙2θ2̇ sin θ2                                 (8) 

 

The Lagrangian for an undamped double pendulum free to move in place is given by: 

                                                          L = T –V                                                                                                   (9) 

Using the expressions in Equations 7 and 8, the kinetic energy is: 



 

𝑇 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2  =
1

2
𝑚1 (𝑥1

2̇ + 𝑦1
2̇) +

1

2
𝑚2 (𝑥2

2̇ + 𝑦2
2̇) 

 

                                                           =
1

2
𝑚1𝑙1

2θ1
2̇ +

1

2
𝑚2 [𝑙1

2θ1
2̇ + 𝑙2

2θ2
2̇ + 2𝑙1𝑙2θ1̇θ2̇ cos(θ1 − θ2)]                                             (10) 

 

The potential energy is the gravitational potential energy: 

 

𝑉 = 𝑚1𝑔𝑦1 + 𝑚2𝑔𝑦2 = −𝑚1𝑔𝑙1 cos θ1 − 𝑚2𝑔(𝑙1 cos θ1 + 𝑙2 cos θ2) 

 

                                                   = −(𝑚1 + 𝑚2)𝑔𝑙1 cos θ1 − 𝑚2𝑔𝑙2 cos θ2                                                                                     (11) 

 

The Lagrangian of the system is then: 

 

           𝐿 =
1

2
(𝑚1 + 𝑚2)𝑙1

2θ1
2̇ +

1

2
𝑚2𝑙2

2θ2
2̇ + 𝑚2𝑙1𝑙2θ1̇θ2̇ cos(θ1 − θ2) + (𝑚1 + 𝑚2)𝑔𝑙1 cos θ1 + 𝑚2𝑔𝑙2 cos θ2             (12) 

 

The canonical momenta associated with the coordinates θ1 and θ2 can be obtained directly from L 

 

                                                            𝑝θ1
=

∂𝐿

∂θ1̇
= (𝑚1 + 𝑚2)𝑙1

2θ1̇ + 𝑚2𝑙1𝑙2θ2cos (θ1 − θ2)                                                               (13) 

                                                            𝑝θ2
=

∂𝐿

∂θ2̇
= 𝑚2𝑙2

2θ2̇ + 𝑚2𝑙1𝑙2θ1 cos(θ1 − θ2)̇                                                                        (14) 

 

The equations of motion of the system are the Euler-Lagrange equations: 

 

                                                            
𝑑

𝑑𝑡
(

∂𝐿

∂θ𝑖
̇ ) −

∂𝐿

∂θ𝑖
= 0 ⟹

𝑑𝑝θ𝑖

𝑑𝑡
−

∂𝐿

∂θ𝑖
= 0 for 𝑖 = 1,2                                                   (15) 

 

Since: 

                
𝑑𝑝𝜃1

𝑑𝑡
= (𝑚1 + 𝑚2)𝑙1

2𝜃1̈ + 𝑚2𝑙1𝑙2𝜃2̈ cos(𝜃1 − 𝜃2) − 𝑚2𝑙1𝑙2𝜃2̇𝜃1 sin(𝜃1 − 𝜃2)̇ + 𝑚2𝑙1𝑙2𝜃2
2 sin(𝜃1 − 𝜃2)̇       (16) 

                
𝑑𝑝θ2

𝑑𝑡
= 𝑚2𝑙2

2θ2̈ + 𝑚2𝑙1𝑙2θ1̈ cos(θ1 − θ2) − 𝑚2𝑙1𝑙2θ1
2̇ sin(θ1 − θ2) + 𝑚2𝑙1𝑙2θ1θ2̇

̇ sin(θ1 − θ2)                     (16) 

                  
∂𝐿

∂θ1
= −𝑚2𝑙1𝑙2θ1θ2̇

̇ sin(θ1 − θ2) − (𝑚1 + 𝑚2)𝑔𝑙1 sin θ1                                                                                        (18) 

                  
∂𝐿

∂θ2
= 𝑚2𝑙1𝑙2θ1θ2̇

̇ sin(θ1 − θ2) − 𝑚2𝑔𝑙2sin𝜃2                                                                                                            (19) 

 

The equation simplifies to: 

 

                            (𝑚1 + 𝑚2)𝑙1𝜃1̈ + 𝑚2𝑙2𝜃2̈ cos(𝜃1 − 𝜃2) + 𝑚2𝑙2𝜃2
2 sin(𝜃1 − 𝜃2)̇ + (𝑚1 + 𝑚2)𝑔 sin 𝜃1 = 0                        (20) 

 

                            𝑙2𝜃2̈ + 𝑙1𝜃1̈ cos(𝜃1 − 𝜃2) − 𝑙1𝜃1
2̇ sin(𝜃1 − 𝜃2) + 𝑔 sin 𝜃2 = 0                                                                           (21) 

 



 

Simplifying and solving for θ: 

 

                                        𝜃1̈ =
−𝑚2𝑙2𝜃2̈ cos(𝜃1 − 𝜃2) − 𝑚2𝑙2𝜃2

2̇ sin(𝜃1 − 𝜃2) − 𝑔(𝑚1 + 𝑚2) sin(𝜃1)

(𝑚1 + 𝑚2)𝑙1
                              (22) 

    

                                        𝜃2̈ =
−𝑚2𝑙2𝜃1̈ cos(𝜃1 − 𝜃2) + 𝑚2𝑙1𝜃1

2̇ sin(𝜃1 − 𝜃2) − 𝑚2𝑔 sin(𝜃2)

𝑚2𝑙2
                                             (23) 

 

 

Finally, equations 22 and 23 were solved numerically using MATLAB with the ode45 solver.

IV. Simulation and Experimental Setup 

There are two ways to solve the equations of 

motion: either use a simulation based on a 

numerical approach or integrate the equations of 

motion to get an analytical solution [17]. We 

chose the latter and used MATLAB and 

integration techniques, specifically Runge-Kutta 

method, due to its precision and stability in 
capturing the system’s behavior over time [18]. 

For all simulations, we maintained a constant set 

of initial conditions for angles and angular 

velocities, which were (θ1, p1, θ2, p2) = (0.52, 0, 

0.79, 0). Afterward, we conducted an extensive 

experiment to determine how mass (m1 and m2) 

and length (l1 and l2) influence the chaotic 

behavior of the DP. This involved two simulations 

for each variable, while keeping the others 

constant. The table below summarizes these 
scenarios. 

Table 1: Simulation Scenarios for Mass and Length Variations 

Case M1 (Kg) M2 (Kg) L1 (m) L2 (m) 

Control 1 1 1 1 

Case 1 2.5 1 1 1 

Case 2 5 1 1 1 

Case 3 1 2.5 1 1 

Case 4 1 5 1 1 

Case 5 1 1 2 1 

Case 6 1 1 3 1 

Case 7 1 1 1 2 

Case 8 1 1 1 3 

The simulation results consist of a phase portrait, 

bifurcation diagram, Poincare map. These visual 

representations offer a comprehensive understanding 

of the system’s behavior [19] [20]. Moreover, the 

Lyapunov exponent is calculated to provide valuable 

insights into the system’s chaotic behavior, which is a 

crucial component of Chaos theory [13] [21]. The 

simulation runs for 50 seconds, using 10000 

timesteps of 0.005 seconds. 

To ensure the accuracy and reliability of our 

simulations, we conducted a comparison analysis by 

aligning our outcomes with established literature 

wherever applicable. 

V. Results and Discussion 

Table 2: Lyapunov Exponents, Hamiltonians, and System 

Natures in Each Case 

Case Lyapunov 

Exponent 

Hamiltonian Nature 

Control -0.1082 -22.3430 Periodic 

Case 1 -0.0486 -32.7714 Quasi-
Periodic 

Case 2 0.1248 -50.1488 Chaotic 

Case 3 0.2682 -45.0665 Chaotic 

Case 4 0.1028 -83.8674 Chaotic 

Case 5 -0.0948 -36.1786 Quasi-
periodic 

Case 6 0.1025 -50.0282 Chaotic 

Case 7 0.2256 -30.8818 Chaotic 

Case 8 0.2536 -39.3719 Chaotic 

 

 



 

i. Control Case (Figure 3) 

As shown in Figure 3, the Lyapunov exponent of the 

control case is -0.1082, indicating periodic motion. 

This periodicity provides valuable insights into the 

system’s stability, highlighting the presence of 

recurrent patterns in its motion. The in-phase phase 

portrait shows that the motion is periodic, and the 

bifurcation diagram illustrates that the angular 

velocity is consistent with the forcing amplitude. 

Overall, these results indicate that the system is 

stable and behaves predictably. 

 

 

Figure 3: Control case results - Phase Portrait, Poincar´e 

Section, and Bifurcation Diagram 

ii. Case 1 (Figure 4) 

Based on the observations made in Figure 4, with m1 

becoming 2.5 kg, the motion becomes less periodic in 

case 1, but it is still not chaotic. The phase portrait shows 

a quasi-phase relationship with a recognizable pattern, 

suggesting a certain degree of regularity within the system 

dynamics. Moreover, the Lyapunov exponent is -0.0486, 

which is larger than the control case, meaning that the 

pendulum has a tendency to exhibit chaotic behavior but 

is still periodic due to its negative value. Additionally, the 

bifurcation diagram, when compared to the control case, 

displays no significant deviation, highlighting the 

system’s stability despite the decreasing periodicity. 

 

 

Figure 4: Case 1 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 



 

iii. Case 2 (Figure 5) 

According to Figure 5, as m1 increased to 5 Kg, the 

pendulum’s behavior became significantly more 

chaotic. The Lyapunov exponent of 0.1248 is notably 

higher than in the control and first case. The Poincare 

map is dispersed, lacking a fixed area, indicating a 

high level of chaos. Additionally, the bifurcation 

diagram highly deviates from the control and first 

case. 

 

Figure 5: Case 2 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 

 

 

iv. Case 3 (Figure 6) 

In the third case, the mass of m2 increased to 2.5 Kg. As 

shown in Figure 6, the phase portrait indicates a high 

degree of chaos compared to the control case. 

Additionally, the Poincar´e section displays points that 

appear to be randomly scattered. The Lyapunov exponent, 

measuring 0.2682, is significantly higher than in cases 1 

and 2, suggesting that chaos is more likely to occur with 

a lower mass (m2) than with a higher mass (m1). All of 

these factors contribute to the chaotic motion of the DP in 

case 3. 

 

 

Figure 6: Case 3 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 

 



 

v. Case 4 (Figure 7) 

For case 4, according to Figure 7, the Lyapunov 

exponent decreased slightly compared to case 3 

when m2 was increased to 5 Kg, measuring at 0.1028. 

The Hamiltonian reached the highest value at -

83.8674 J. Additionally, the Poincare section 

exhibited periodicity once more, with points 

clustering closely together. These findings support 

the initial hypothesis that the DP’s motion tends to 

become periodic again at higher energy levels. 

 

Figure 7: Case 4 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 

 

vi. Case 5 (Figure 8) 

In Figure 8, it can be observed that the phase portrait 

of case 5 showcases a distinct quasi-periodic pattern 

when the upper length (l1) is increased to 2 m. 

Furthermore, the Poincare section reveals 

periodicity, while the Lyapunov exponent records at 

-0.0948, surpassing the control case, albeit remaining 

negative. These findings indicate that the motion is, 

in fact, quasi-periodic. 

 

Figure 8: Case 5 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 

 

 



 

vii. Case 6 (Figure 9) 

The findings presented in figure 9’s phase portrait 

and Poincare section indicate that the double 

pendulum’s movement becomes chaotic as the upper 

length increases to 5 m. This conclusion is reinforced 

by the positive Lyapunov exponent of 0.1025. 

Therefore, it can be deduced that the pendulum’s 

upper length increase results in an escalated level of 

chaos. 

 

 

Figure 9: Case 6 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 

 

 

viii. Case 7 (Figure 10) 

Based on the insights presented in figure 10, when 

the lower length (l2) of case 7 is extended to 2 m, the 

phase portrait and Poincare section show chaos with 

a positive Lyapunov exponent of 0.2256. This value 

surpasses the results obtained from cases 5 and 6, 

where the upper length (l1) was extended instead. 

These findings imply that augmenting the lower 

length (l2) of the DP has a more significant effect on 

its chaotic dynamics than increasing the upper 

length. 

 

 

Figure 10: Case 7 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 



 

ix. Case 8 (Figure 11) 

In Figure 11, it is observed that case 8 exhibits a 

greater degree of chaos than case 7, with a Lyapunov 

exponent of 0.2536. This suggests that as the lower 

length increases, the level of chaos intensifies, as 

evidenced by the discrepancy between the Lyapunov 

exponent of the control case, case 7, and case 8. 

 

 

Figure 11: Case 8 results - Phase Portrait, Poincar´e Section, 

and Bifurcation Diagram 

 

 

 

 

VI. Conclusion 

Studying the double pendulum is important due to its 

chaotic nature, and particularly its dependence on 

mass and length. In this paper, we conducted 9 

simulations to test the relationship between upper 

and lower mass, as well as upper and lower length, 

on the chaotic behavior of the double pendulum. We 

presented the results in Poincare sections, phase 

portraits, bifurcation diagrams, Lyapunov exponents, 

and Hamiltonians (energy). Our analysis shows that 

the chaotic behavior of the double pendulum 

increases with an increase in both mass and length, 

with the lower mass and length having a more 

significant effect on chaos than the upper ones. This 

study offers valuable insights into the behavior of the 

DP and can contribute to developing more accurate 

models and simulations in the future. 
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VIII. Key Symbols 

Symbol Description 

m1, m2 Masses of the upper and lower 

pendulum bobs, respectively (in kg). 

l1, l2 Lengths of the upper and lower 

pendulums, respectively (in meters). 

g Acceleration due to gravity (in m/s2). 

x1, y1, x2, y2 Cartesian coordinates of the pendulum 

bobs in a two-dimensional plane (in 

meters). 

𝑥1̇, 𝑦1̇, 𝑥2̇, 𝑦2̇ Velocities of the pendulum bobs in the 

horizontal and vertical directions (in 

m/s). 

θ1, θ2 Angles of the upper and lower 

pendulums (in radians) with respect to 

the vertical axis. 

𝜃1̇, 𝜃2̇ Angular velocities of the upper and 

lower pendulums (in rad/s). 

𝜃1̈, 𝜃2̈ Angular accelerations of the upper and 

lower pendulums (in rad/s2). 

pθ1, pθ2 Canonical momenta corresponding to 

θ1 and θ2 (in Kg · m/s). 

V Potential energy of the system (in 

joules). 

T Kinetic energy of the system (in 

joules). 

L Lagrangian of the system (in joules). 

H Hamiltonian of the system, 

representing the total energy (in 

joules). 

λ Lyapunov exponent, a quantity that 

can detect the presence of chaos and 

quantify the stability or instability of 

the system (dimensionless). 

A Action ( in Kg · m2 · s−1) 

∂ Partial derivative symbol used in 

calculus to denote partial 

differentiation. 
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