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Abstract 

This study aims to explore the use of Pascal's triangle and other analogous structures in higher dimensions to 

predict the position of particles inside a random walk after a certain number of steps. Pascal's triangle is a triangular 

array of numbers in which each number is the sum of the two numbers directly above it, and explores higher 

dimensional structures like Pascal’s pyramid (the three-dimensional equivalent of Pascal’s triangle). The first part 

of the study delves into the concept of Pascal's triangle and its fundamental properties. After that, Pascal's triangle 

was used in predicting the position of particles inside a random walk. A random walk is a mathematical model 

used to describe the movement of particles in a system where the direction and magnitude of each step are random. 

The probability of a particle ending up at a particular point after a certain number of steps in a random walk can 

be calculated using Pascal's triangle. The numerator of the fraction representing the probability is the value at the 

point in Pascal's triangle, while the denominator is the sum of the numbers in the corresponding row or layer of 

the triangle. The paper demonstrates how these concepts can be used to predict the position of particles inside a 

random walk and provide a real-life example of their application in the simulation of Brownian motion. 

 

I. Introduction 

Pascal's triangle is a triangular array of numbers that 

provide the coefficients in the expansion of the binomial 

formula(𝑥 + 𝑦)𝑛 [1]. Numbers are arranged in rows such 

that: 

𝑎𝑛𝑟 =
𝑛!

𝑟! (𝑛 − 𝑟)!
= (

𝑛
𝑟

) 

where (
𝑛
𝑟

)  is the binomial coefficient (1). It is named 

after the mathematician Blaise Pascal, as he studied the 

triangle and published the “Traite du Triangle 

Arithmetique” in his studies of probability theory in the 

seventeenth century.  To construct the triangle, a 1 is first 

placed on top. Each subsequent row in the triangle is 

created by adding the two entries diagonally above it (2).  

(
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
= (

𝑛 − 1
𝑟

) + (
𝑛 − 1
𝑟 − 1

).                 

 

The method of addition can be visualized by forming an 

upside-down triangle to get the value of the next element 

in the next row, where the apex is the sum of the two 

numbers on the other two vertices as shown in figure 1. 

Algebra, combinatorics, and probability theory all make 

use of the patterns placed in it.  

 

 

 

 

 

Pascal’s pyramid is the three-dimensional equivalent of 

Pascal’s triangle and computes the trinomial expansion 

(𝑥 + 𝑦 + 𝑧)𝑛. It is formed in a pyramid shape, where each 

subsequent layer is created by adding the three diagonals 

directly above as shown in figures 2,3 [2].  
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Figure 1: Pascal's triangle 

(2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

The purpose of this study is to see if Pascal’s triangle 

and other analogous structures in higher dimensions can 

predict the position of particles inside a random walk after 

a certain number of steps. The relation between Pascal’s 

pyramid and a two-dimensional random walk, which is 

determining the position of a point after a specified 

number of steps in two dimensions, is discussed to see if 

it is connected as Pascal’s triangle and one-dimensional 

random walk and if it can be applied in higher dimensions 

and in real life. A real-life example is the Wiener process 

also called Brownian motion, which is the random 

movement of particles inside a fluid. It can be simulated 

by two-dimensional random walks, which include the 

path a molecule can take in its motion.   

II.  Theory 

i. Patterns in Pascal’s Triangle 

Firstly, the triangle is symmetrical, where the 

numbers are placed like a mirror image. Furthermore, The 

sum of elements in a row equal 2𝑛 . Moreover, the 

diagonals have patterns inside them. The first diagonal is 

just “1” s. The next diagonal is the counting numbers. The 

third diagonal is the triangular number which are fictitious 

numbers that can be represented as an equilateral 

triangular grid of elements with each row having one 

more element than the one before it. 

Lastly, the fourth diagonal represents the tetrahedral 

numbers which are the number of balls needed to form a 

tetrahedron. If you add up the shallow diagonals, the 

Fibonacci sequence shows up.  

The Fibonacci sequence is a sequence of numbers in 

which each number is the sum of the two numbers before 

it. Figure 4 shows all the patterns just mentioned. 

ii. Patterns in Pascal’s Pyramid 

To visualize the numbers in the pyramid, they are 

divided into layers instead of rows, which are present in 

Pascal’s triangle. The sum of elements in layer n of 

Pascal’s pyramid is 3𝑛. The numbers along the faces of 

the pyramid in the 𝑛𝑡ℎ layer of the pyramid are the same 

as Pascal’s triangle elements in the 𝑛𝑡ℎrow. Another tie 

between Pascal’s pyramid and Pascal’s triangle is that to 

obtain the elements in the 𝑛𝑡ℎ layer inside of Pascal’s 

pyramid, constructing Pascal’s triangle to the 𝑛𝑡ℎ  row, 

then multiply each row by the numbers in the 𝑛𝑡ℎrow. 

Figure 3: How each element is formed [2] 

Figure 2: Pascal’s pyramid in the form of 

layers [2] 
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1+1 = 2  
2+1 = 3 

1+3+1 = 5 

Figure 4: Patterns in Pascal's Triangle 

Figure 5: The relation between Pascal's pyramid and 

Pascal's triangle 

(a): Pascal’s triangle (b): Layer 4 of Pyramid 



 

Figures (5a) and (5b) show an example of this relationship 
[3]. 

iii. Randomness and Random Walks  

A random walk is the process of determining the position 

of a point after a specified number of random steps. The 

walk can be in one dimension, two dimensions, or three 

dimensions and higher dimensions. It is central to 

statistical physics and an important part of probability 

theory in mathematics. 

iv. Random Walk in One Dimension: 

 A random walk in one dimension can be constructed as  

follows: a particle is present on the number line, and it has 

the probability of either going up or down. This can be 

visualized by flipping a coin; if it lands on head, the 

particle goes up, and if it lands on tails, the particle goes 

down [4]. There is an equally probable chance of landing 

on either heads or tails in both cases. Let s be the direction 

the point moves to (either up or down) and "d" the 

distance traveled by the point. "d" can be positive or 

negative, as the point can go above or below zero, and n 

is the total number of steps taken. (3). 

𝑑 = 𝑠1 + 𝑠2 + 𝑠3+. . . +𝑠𝑛. 

Random walks in one dimension have a relationship 

between Pascal’s triangle as the probability of ending at a 

point equals each element in Pascal’s triangle divided by 

the sum of the values in the row. Letting P(N) be the 

probability function, For instance, after 2 steps, 

𝑃(2) =
1

4
 

𝑃(0) =
2

4
 

𝑃(−2) =
1

4
 

The numerator of the probabilities corresponds to row 2 

in pascal’s triangle and the denominator is the sum which 

equals 22  which is 4. Figure 6 shows an example of a 

random walk with 100 steps. To get the probability, row 

100 of the triangle would be computed, the denominator 

would be computed by 2100, and the nominator would be 

the elements in the row. 

 

v. Random Walk on Two Dimensions 

Random walks in two dimensions are simulated on two 

coordinates, x and y. The walk starts at the origin and 

takes N steps in the xy plane (in unit length, not in 

coordinate form). The radial distance R from the starting 

point after N steps (5):  

𝑅2 = (𝛥𝑥1 + 𝛥𝑥2 + ⋯ + 𝛥𝑥𝑁)2 + (𝛥𝑦1 + 𝛥𝑦2 + ⋯ +

𝛥𝑦𝑁)2 

Because the particle is in random motion, each movement 

position is equally likely to occur. The average radial 

distance after many steps will be where the root mean 

square of the step size (𝑟𝑟𝑚𝑠) [5] is (6):  

𝑅𝑟𝑚𝑠 ≈ √𝑁𝑟𝑟𝑚𝑠 

And after a huge number of steps, the point is more likely 

to be at the origin position. Two dimensions random 

walks are present in our daily life as the diffusion of 

particles in space. Figure 7 shows a two-dimension 

random walk after 100 steps. 

(3) 

(4) 

Figure 6: Random walk in one dimension 

(5) 

(6) 

 

Figure 7: An example of a 2D random walk 

(8) 



 

vi. Real World Applications of Random Walks 

(Brownian Motion) 

Brownian Motion is the random movement of 

particles inside a fluid. It gets its name from the Scottish 

botanist Robert Brown. He observed pollen grains under 

the microscope and said that the particles displayed rapid 

and irregular movement that seemed to be continuous. 

Albert Einstein and Marian Smoluchowski further 

developed Brownian Motion. Einstein was the first to 

realize that due to collisions with molecules, particles 

should move with kinetic energy equal to 𝑘𝐵𝑇 ∕ 2 (where 

𝑘𝐵  is the Bolzmann constant and 𝑇  is the fluid 

temperature). 

Smoluchowski, on the other hand, used kinetic theory to 

perform calculations. He stated that one collision alone 

would not be sufficient to generate movement, but the 

number of collisions is large and can create motion. 

Smoluchowski realized that there will always be 

unbalance due to fluctuations in the order of the square 

root of the number of collisions, thus creating motion. 

The other part of Einstein’s theory was a result of Stokes 

law for the frictional force exerted on a body moving in a 

liquid: a spherical body of radius a moving with velocity 

v in a fluid of viscosity η is slowed down by a force given 

by −6𝜋𝜂𝑎𝑣. 

 

Einstein formulated that the particle performs irregular 

motion, very similar to a random walk. It is characterized 

by the square displacement [ 𝛥𝑥(𝑡) = |𝑥(𝑡) − 𝑥(0)|2 ] 

(where 𝑥(𝑡) is the position of particle at time t)] of the 

particle as it grows on linearly in time [6]:   

⟨|𝛥𝑥(𝑡)|⟩ ≈ 6𝐷𝑡 

 

Equation (2.4a) is Einstein- Smoluchowski law of 

diffusion, and to derive the diffusion coefficient D, using 

Stokes law and energy equipartition equation (8)  

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑎𝑣
 

To connect the ideas of a random walk and 

Brownian motion, the Wiener process is used. Although 

this is strictly speaking a confusion of a model with the 

reality being modeled, the Wiener process is occasionally 

referred to as "Brownian motion". The Wiener process is 

the scaling limit of a random walk; if there is a random 

walk with a very small step size, there a Wiener process 

can be approximated. If the step size is ε, for example, to 

approximate a Wiener length of L, a walk of length 𝐿/

𝜀2 is taken. The random walk turns into a Wiener process 

as the number of steps rises. This step is made to simulate 

the random movement of particles as the step size gets 

decreased to a small step size.  It is controlled by the 

central limit theorem. Central limit theorem is that the 

sampling distribution of the mean will always be normally 

distributed, if the sample size is large enough.  

Brownian motion can be observed in multiple parts of 

daily life. Gas molecules represent Brownian motion. 

Moreover, the motion of pollen grains in still water. 

 

III. Methodology 

 
i. Libraries  

Built-in libraries of Python were used to facilitate the 

writing process of building and constructing the 

algorithms. To begin, the math library was used to 

implement mathematical values like math.pi and 

math.cos() were used. Secondly, the random library 

was used to implement the random factors in the 

random walk like random.seed() and random.choice() 

were used. “random.choice” is a built-in random 

module that chooses between the given arguments.  

The matplotlib.pyplot was used as a way to visualize 

the results in graph form in one dimension and in two 

dimensions. Moreover, the numpy library was used to 

add more mathematical functions like sqrt(). 

 

ii. Pascal’s Triangle Algorithm 

A function named “pascal triangle” was built that takes 

an argument “n” generating the nth row of Pascal’s 

triangle. First, it initializes the current row to be (1), 

the first row of Pascal’s triangle. Then, for each 

subsequent row, it creates a new list “next_row” and 

sets the first element to (1).   

Figure 8 shows the key snippet that codes for Pascal’s 

triangle. The first line creates a loop that iterates over 

each index “I” in ‘current_row’ list, except the last 

index. “len(current_row) – 1” gives out the number of 

(7) 

(8) 



 

elements inside the list minus the last element, as the 

last element is one. The term inside the for loop is the 

main part of the code, and it appends the sum of the 

current element “current_row[i]” and the next element 

“current_row [i + 1]” to the next_row list. Moreover, it 

sets ‘current_row’ to ‘next_row’ to generate the 

following row in the triangle. Lastly, it repeats until it 

reaches the nth row of the triangle. 

for i in range(len(current_row) - 1): 

next_row.append(current_row[i] + 

current_row[i + 1]) 

To code for the probability inside the triangle, a 

dictionary was initialized to store the values of the 

probabilities. They were computed by taking each 

value in the “current_row” list and dividing it by 2𝑛 . 

Then, each probability gets added to the “random_dict” 

dictionary as shown in figure 9. 

 random_dict = {} 

    for value in current_row: 

      prob_2d = value / 2**n 

      random_dict[value] = [prob_2d] 

      random_dict[value, y] = 

random_dict.pop(value) 

      y -= 2 

 

Tying the random walk placement to Pascal’s triangle 

was done by adding a key value in the dictionary that 

contained the probability values. This was done by 

making a new variable called y that starts by having 

the same value as the number of steps taken, after that 

it is decremented by a value of two, then it creates a 

new key-value pair were each probability has two 

keys, one being the value inside pascal’s triangle and 

the other key is the position after a set number of 

steps. For instance, after 4 steps, the ‘random_dict”  

dictionary has values of “{(1, 4): [0.0625], (4, 2): [0.25], 

(6, 0): [0.375], (4, -2): [0.25], (1, -4): [0.0625]}” where 

the first element in the tuple is the value in the pascal’s 

triangle in pascal’s triangle, and the second element in 

the tuple is the possible End Points After N Steps. 

iii. Random Walk In One Dimension Algorithm  

A function named “random_walk_1d” was constructed 

to simulate the random walk. It takes two arguments: 

“start” which initializes the position of the walk, and 

“n”, which is the length of the step. Firstly, 

random.seed() was used to ensure that each time the 

function gets called, the number generated is different. 

The “current” variable gets assigned the “start” 

variable to initialize the starting position. After that, a 

list “steps” gets initialized that stores the steps taken 

by the program. 

Figure 10 shows the loop that iterates “n” times, 

generating a random step and updating the position of 

the random walk. “random.choice([-1, 1])”  is the two 

possible outcomes of the walk, either going to the left 

or to the right. After the choice is made, the current 

position gets updated by adding the random step to 

the current position and appending it to the steps list.  

for i in range(n): 

        step = random.choice([-1, 1]) 

        current += step 

        steps.append(current) 

 

 

To calculate the probabilities of the random walk, 

‘num_trials’ is specified, which signifies the number of 

times the random walk would be executed. The 

starting position ‘start’ gets assigned the value zero to 

indicate starting at the origin. After that, it records the 

final position of the particle after each trial and keeps 

track of the frequency of each final position in a 

dictionary called ‘end_points_freq_dict’.  

 

A for loop gets initiated that runs the walk a specified 

number of times, (set to 1000 as a baseline) and 

records the final position of the particle after each trial 
inside the end_points_freq_dict dictionary. To calculate 

Figure 8: Getting the values of Pascal's triangle 

Figure 9: getting the probabilities in pascal's triangle 

Figure 10: Random walk in one-dimension code 



 

the probability of each final position, the frequency of 

each position is divided by the ‘total_trials’. The 

resulting probability is then stored in a new dictionary 

called ‘end_points_prob_dict”as shown in figure 11. 

start = 0 

num_steps = int(input("Enter the number 

of steps: ")) 

num_trials = 10000 

end_points_freq_dict = {} 

for i in range(num_trials): 

    steps = random_walk_1d(start, 

num_steps) 

    end_point = steps[-1] 

    end_points_freq_dict[end_point] = 

end_points_freq_dict.get(end_point, 0) 

+ 1 

 

total_trials = num_trials 

end_points_prob_dict = {} 

for point in end_points_freq_dict: 

    end_points_prob_dict[point] = 

end_points_freq_dict[point] / 

total_trials 

To add the uncertainty (standard error) to the graph, 

using the formula  

√𝜌 × (1 − 𝑝)/𝑛 

Where p is the probability of ending at a point, (1-p) is 

the probability of the complementary event, and n is 

the total number of trials. The standard error is a 
measurement of the deviation between the sample 

mean and the actual population mean. This was 

calculated to see the range of error that the probability 

gets to measure. The probability values are first 

extracted by the code using the "values ()" method 

from a dictionary called "end_points_prob_dict," and 

then they are transformed into a list using the "list ()" 

function. The variable "probs" holds the resulting list 

of probabilities. 

The standard error is then calculated for each 

probability value in the probs list using a list 

comprehension as shown in figure 12. The square root 

of each probability value p is calculated using the sqrt 

() function from the NumPy library. The list ‘stderrs' 

contains the resulting standard errors. 

probs = 

list(end_points_prob_dict.values()) 

stderrs = [np.sqrt(p * (1 - p) / 

total_trials) for p in probs] 

 

iv. Pascal’s Pyramid Algorithm 

The code for Pascal’s pyramid was taken from 

bodyshots on Git Hub [7] with changes to fit the model. 

The code has two classes. The first class 

“Pascal3DElem” codes for the element inside Pascal’s 

pyramid, which is a number. The second class 

“PascalPyramid” codes for Pascal’s pyramid itself. 

“PascalPyramid” has three methods, each one codes 

for a part to generate the pyramid.  

The first method “__init__” initializes the layer’s 

attribute of the pyramid, which is a list of 

“Pascal3DElem” objects representing the pyramid. It 

takes an argument that signifies the layer to 

generate the layers included in the pyramid. It 

uses a loop to generate each layer of the pyramid, 

starting from layer “0”, which is (1). After that, the 

loop calls the get_next_layer method to generate each 

subsequent layer of the pyramid. 

 

The second method, “get_next_layer,” generates 

the next layer of the pyramid by being given the 

previous layer; it takes ‘prev_layer’, which represents 

the previous layer of the pyramid. The method creates 

an empty list called ‘next_layer’ to contain the next 

layer of the pyramid. Moreover, a loop is used to 

generate each row of the next layer, starting with the 

top row, creating a list of Pascal3DElem objects for 

Figure 11: Calculating the probabilities inside the random walk 

(9) 

Figure 12: Standard error in the random walk 



 

each row, with the length of the list equal to the row 

number plus one. Furthermore, the method uses 

another loop to calculate the value of each element in 

the next layer based on the values of the elements in 

the previous layer. For each element in the previous 

layer, the method adds the value to the values of the 

elements that are above, below, and right next to it in 

the next layer, generating the next layer of the 

pyramid. Figure 13 shows the method in detail.  

def get_next_layer(self, prev_layer): 

        next_layer = [] 

        for i in 

range(len(prev_layer[0]) + 1, 0, -1): 

            next_layer.append([Pascal3D

Elem() for _ in range(i)]) 

 

        for row_num in 

range(len(prev_layer)): 

            for entry_index in 

range(len(prev_layer[row_num])): 

                curr_elem = 

prev_layer[row_num][entry_index].elem 

                next_layer[row_num][ent

ry_index].elem += curr_elem 

                next_layer[row_num][ent

ry_index + 1].elem += curr_elem  

                next_layer[row_num + 

1][entry_index].elem += curr_elem  

        return next_layer 

 

The last method, “probability_pyramid,” is 
used to create the probability of ending at a point 

inside the pyramid.  It takes the last layer of the 

pyramid, then generates a list of values of all elements 

in the last layer. It creates an empty dictionary to store 

the values. Moreover, it uses a loop to iterate over the 

list of elements, and for each element, it divides the 

element by 3𝑛, where the n represents the number of 

layers in the pyramid. It takes this value and add it to 

the “prop_3d” dictionary with the key being the 

original value and the value is the probability as 

shown in figure 14. 

def probability_pyramid(self): 

      last_layer = self.layers[-1] 

      elements = [elem.elem for row in 

last_layer for elem in row] 

      global prob_3d 

      prob_3d = {} 

      y=1 

      for elem in elements: 

        divide_3d= elem / (3**x) 

        prob_3d[elem] = [divide_3d] 

        y += 1 

      return elements , prob_3d 

 

v. Random Walk in Two Dimensions  

A “random_walk_2d” function was created to generate 

a random walk starting from the origin and having to 

move between three possible steps. The steps were 

designed to align with the values of the pyramid, as the 

pyramid has three faces.  

The function takes two arguments, ‘start’, a tuple to 

indicate the starting position, and ‘num_steps’, an 

integer specifying the number of steps to take. A loop 

is initiated that takes ‘num_steps’, where in each step, 

the function generates a random step size. The 

direction gets assigned by calling ‘random.choice()’, 

where it contains three tuples representing the 

direction of the step. The steps can have three 

directions, and the angle between each step is 120 

degrees. This was made by using trigonometry and 

making the directions (sin 30, cos 30), (1,0), and (-sin 

30, -cos 30). Then, the function updates the current 

position by adding the step size and direction to the x 
and y coordinates in position. They were then 

Figure 13: Generating the next layer of pascal's pyramid 

Figure 14: Getting the probability in Pascal’s pyramid 



 

separated to ease graphing of the position as shown in 

figure 15. 

for i in range(num_steps): 

        step = 

random.choice([(0.5,math.cos(math.pi / 

6)) ,(1,0),(-0.5,-math.cos(math.pi / 

6))]) 

        position[0] += step[0] 

        position[1] += step[1] 

        steps.append(tuple(position)) 

        x_positions.append(position[0]) 

        y_positions.append(position[1]) 

 

Similar to how the probabilities were calculated in the 

one-dimensional random walk, the probability of the 

two-dimensional random walk is constructed. The 

‘start’, instead of being an integer, is now a list 

consisting of two zeros to indicate the origin point. 

Since the directions set have decimal points, the final 

position of the particle is rounded to 5 decimal places 

and stored as a tuple in the “end_point” variable before 

being added to the “end_points_freq_dict” dictionary. 

This makes sure that there are no random errors or 

duplicates at the same point as shown in figure 16. 

start = [0, 0] 

num_steps = int(input("Enter the number 

of steps: ")) 

num_trials = 1000 

end_points_freq_dict = {} 

for i in range(num_trials): 

    steps, x_positions, y_positions = 

random_walk_2d(start, num_steps) 

    end_point = tuple(round(coord, 5) 

for coord in steps[-1]) 

    end_points_freq_dict[end_point] = 

end_points_freq_dict.get(end_point, 0) 

+ 1 

 

total_trials = num_trials 

end_points_prob_dict = {} 

for point in end_points_freq_dict: 

    end_points_prob_dict[point] = 

end_points_freq_dict[point] / 

total_trials 

 

vi. Testing the Models 

After building the models, they were subjected to 

visualization to see the relation between random 

walks in one and two dimensions and Pascal’s triangle 

and Pascal’s pyramid, to see if it can predict the 

probability of ending at a point in the random walk 

based on the values inside of the structure. 

The random walk was simulated a thousand times, 

and then ten thousand times, in both the one-

dimensional random walk and the two-dimensional 

random walk. The standard error ( 𝑝^)  of the 

probabilities given by the random walk was given by 

the equation (10) where p is the frequency of ending 

at the point and n is the total trials given.  

𝑝^ = √𝑝(1 − 𝑝) ∕ 𝑛  

 

For the two-dimensional random walk, error bars 

were added to the graph representing the uncertainty 

in the estimated of the probabilities of ending at each 

point. They indicate the standard deviation of the 

estimated probabilities, which is a measure of how 

spread out the estimates are around their mean, that’s 

why the standard deviation and mean was calculated. 

The standard deviation was calculated by Bernoulli 

distribution, which aligns with equation (3.6). This 

formula assumes that the probability estimates are 

independent and identically distributed, which is a 

Figure 15: Random walk in two dimensions 

Figure 16: Calculating the probability in two dimensions 

(10) 



 

reasonable assumption in this case since each trial is 

independent and the endpoint probabilities are 

estimated using the same number of trials figure 17. 

x_means = np.array([point[0] for point 

in end_points_prob_dict.keys()]) 

y_means = np.array([point[1] for point 

in end_points_prob_dict.keys()]) 

x_stdevs = np.array([np.sqrt(prob * (1 

- prob) / total_trials) for prob in 

end_points_prob_dict.values()]) 

 

 

IV.  Results and Discussion 

i. Pascal’s triangle and one-dimensional 

random walk 

There is a set relation between Pascal’s triangle and a 

one-dimensional random walk where the probability 

of ending at any point after n steps corresponds to the 

values in the triangle over their sum. 

𝑣 =
1

2𝑛
 

The numbers were then compared to Pascal’s triangle 

probability numbers v and it showed that by 
increasing the number of trials, the numbers 

approached the values given out by Pascal’s triangle. 

This is apparent in Figure 18, where in (a) the 

probabilities don’t align as well as in (b). This shows 

that Pascal’s triangle shows the probability of landing 

at each point accurately. Looking at the graph, a 

pattern emerges where the smallest number is 

pascal’s triangle, which is (one) corresponds to the 

farthest point from the origin.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: One-dimensional random walk after 10 steps 

An observation can be made were the middle values 

inside of the triangle are nearest to the origin. 

Furthermore, in rows where there is an odd number 

of elements in the row, the middle element 

corresponds to the highest probability which is 

returning to the origin. 

ii. Pascal’s Pyramid and Two-Dimensional 

Random Walk 

In two dimensions, similar observations can be made 

with Pascal’s Triangle and the one-dimensional 

random walk. To begin with, the probabilities of 

ending at any point in the walk showed like the values 

given out by the pyramid given by the formula, where 

v is the probabilities given out by the pyramid. 

𝑣 =
1

3𝑛
 

Like the one-dimensional walk, the probabilities 

whenever the number of trials increases, the 

probability of ending at points closely resembled 

those of pascal’s pyramid. 

 

 

 

 

 

 

 

Figure 17: Standard Deviation calculated in the graph 

(11) 

(a). After a thousand trials 

(b). After ten thousand trials 

(12) 

(a) After a thousand trials 



 

 

 

 

 

 

 

 

 

 

The values in each row in the probabilities correspond 

to a row inside of the layer in pascal’s pyramid. As it is 

clear in figure 19, the topmost points in the graph 

correspond to the top most row in pascal’s pyramid 

layer. Each layer is computed where the layer number 

is the number of steps taken. 

The closer to the origin, the higher the probability to 

end at it. The values in a layer inside of the pyramid 

has its higher values in the middle of the layer. This 

corresponds to the results given. 

 

V.  Conclusion 

Pascal’s triangle is one of the fascinating subjects 

taught in mathematics, it has usages in combinatorics 

and algebra. This paper proved that there is another 

way that pascal’s triangle and other structures in 

higher dimensions like pascal’s pyramid can be used 

to predict the probability of ending at a point inside 

random walks in one dimension and two dimensions. 

The purpose of this study was to see if pascal’s triangle 

and higher dimensional structures like pascal’s 

triangle can model high dimensional random walks. 

This relation was set after building the probability 

inside of the structure by putting the numerator as the 

value inside of the structure and the denominator is 

the sum of the layer or row inside of the structure. 
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(b) After ten thousand 

trials 
Figure 19: Two-dimensional random walk probability 


