

Computational Physics

The Relation Between One and Two-

Dimensional Random Walks to Pascal’s

Triangle and Analogous Higher-Dimensional Structures

Habiba Sorour, Maadi STEM Highschool for Girls

Abstract

This study aims to explore the use of Pascal's triangle and other analogous structures in higher dimensions to

predict the position of particles inside a random walk after a certain number of steps. Pascal's triangle is a triangular

array of numbers in which each number is the sum of the two numbers directly above it, and explores higher

dimensional structures like Pascal’s pyramid (the three-dimensional equivalent of Pascal’s triangle). The first part

of the study delves into the concept of Pascal's triangle and its fundamental properties. After that, Pascal's triangle

was used in predicting the position of particles inside a random walk. A random walk is a mathematical model

used to describe the movement of particles in a system where the direction and magnitude of each step are random.

The probability of a particle ending up at a particular point after a certain number of steps in a random walk can

be calculated using Pascal's triangle. The numerator of the fraction representing the probability is the value at the

point in Pascal's triangle, while the denominator is the sum of the numbers in the corresponding row or layer of

the triangle. The paper demonstrates how these concepts can be used to predict the position of particles inside a

random walk and provide a real-life example of their application in the simulation of Brownian motion.

I. Introduction

Pascal's triangle is a triangular array of numbers that

provide the coefficients in the expansion of the binomial

formula(𝑥 + 𝑦)𝑛 [1]. Numbers are arranged in rows such

that:

𝑎𝑛𝑟 =
𝑛!

𝑟! (𝑛 − 𝑟)!
= (

𝑛
𝑟

)

where (
𝑛
𝑟

) is the binomial coefficient (1). It is named

after the mathematician Blaise Pascal, as he studied the

triangle and published the “Traite du Triangle

Arithmetique” in his studies of probability theory in the

seventeenth century. To construct the triangle, a 1 is first

placed on top. Each subsequent row in the triangle is

created by adding the two entries diagonally above it (2).

(
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
= (

𝑛 − 1
𝑟

) + (
𝑛 − 1
𝑟 − 1

).

The method of addition can be visualized by forming an

upside-down triangle to get the value of the next element

in the next row, where the apex is the sum of the two

numbers on the other two vertices as shown in figure 1.

Algebra, combinatorics, and probability theory all make

use of the patterns placed in it.

Pascal’s pyramid is the three-dimensional equivalent of

Pascal’s triangle and computes the trinomial expansion

(𝑥 + 𝑦 + 𝑧)𝑛. It is formed in a pyramid shape, where each

subsequent layer is created by adding the three diagonals

directly above as shown in figures 2,3 [2].

(1)

Figure 1: Pascal's triangle

(2)

The purpose of this study is to see if Pascal’s triangle

and other analogous structures in higher dimensions can

predict the position of particles inside a random walk after

a certain number of steps. The relation between Pascal’s

pyramid and a two-dimensional random walk, which is

determining the position of a point after a specified

number of steps in two dimensions, is discussed to see if

it is connected as Pascal’s triangle and one-dimensional

random walk and if it can be applied in higher dimensions

and in real life. A real-life example is the Wiener process

also called Brownian motion, which is the random

movement of particles inside a fluid. It can be simulated

by two-dimensional random walks, which include the

path a molecule can take in its motion.

II. Theory

i. Patterns in Pascal’s Triangle

Firstly, the triangle is symmetrical, where the

numbers are placed like a mirror image. Furthermore, The

sum of elements in a row equal 2𝑛 . Moreover, the

diagonals have patterns inside them. The first diagonal is

just “1” s. The next diagonal is the counting numbers. The

third diagonal is the triangular number which are fictitious

numbers that can be represented as an equilateral

triangular grid of elements with each row having one

more element than the one before it.

Lastly, the fourth diagonal represents the tetrahedral

numbers which are the number of balls needed to form a

tetrahedron. If you add up the shallow diagonals, the

Fibonacci sequence shows up.

The Fibonacci sequence is a sequence of numbers in

which each number is the sum of the two numbers before

it. Figure 4 shows all the patterns just mentioned.

ii. Patterns in Pascal’s Pyramid

To visualize the numbers in the pyramid, they are

divided into layers instead of rows, which are present in

Pascal’s triangle. The sum of elements in layer n of

Pascal’s pyramid is 3𝑛. The numbers along the faces of

the pyramid in the 𝑛𝑡ℎ layer of the pyramid are the same

as Pascal’s triangle elements in the 𝑛𝑡ℎrow. Another tie

between Pascal’s pyramid and Pascal’s triangle is that to

obtain the elements in the 𝑛𝑡ℎ layer inside of Pascal’s

pyramid, constructing Pascal’s triangle to the 𝑛𝑡ℎ row,

then multiply each row by the numbers in the 𝑛𝑡ℎrow.

Figure 3: How each element is formed [2]

Figure 2: Pascal’s pyramid in the form of

layers [2]

1
1

1+1 = 2
2+1 = 3

1+3+1 = 5

Figure 4: Patterns in Pascal's Triangle

Figure 5: The relation between Pascal's pyramid and

Pascal's triangle

(a): Pascal’s triangle (b): Layer 4 of Pyramid

Figures (5a) and (5b) show an example of this relationship
[3].

iii. Randomness and Random Walks

A random walk is the process of determining the position

of a point after a specified number of random steps. The

walk can be in one dimension, two dimensions, or three

dimensions and higher dimensions. It is central to

statistical physics and an important part of probability

theory in mathematics.

iv. Random Walk in One Dimension:

 A random walk in one dimension can be constructed as

follows: a particle is present on the number line, and it has

the probability of either going up or down. This can be

visualized by flipping a coin; if it lands on head, the

particle goes up, and if it lands on tails, the particle goes

down [4]. There is an equally probable chance of landing

on either heads or tails in both cases. Let s be the direction

the point moves to (either up or down) and "d" the

distance traveled by the point. "d" can be positive or

negative, as the point can go above or below zero, and n

is the total number of steps taken. (3).

𝑑 = 𝑠1 + 𝑠2 + 𝑠3+. . . +𝑠𝑛.

Random walks in one dimension have a relationship

between Pascal’s triangle as the probability of ending at a

point equals each element in Pascal’s triangle divided by

the sum of the values in the row. Letting P(N) be the

probability function, For instance, after 2 steps,

𝑃(2) =
1

4

𝑃(0) =
2

4

𝑃(−2) =
1

4

The numerator of the probabilities corresponds to row 2

in pascal’s triangle and the denominator is the sum which

equals 22 which is 4. Figure 6 shows an example of a

random walk with 100 steps. To get the probability, row

100 of the triangle would be computed, the denominator

would be computed by 2100, and the nominator would be

the elements in the row.

v. Random Walk on Two Dimensions

Random walks in two dimensions are simulated on two

coordinates, x and y. The walk starts at the origin and

takes N steps in the xy plane (in unit length, not in

coordinate form). The radial distance R from the starting

point after N steps (5):

𝑅2 = (𝛥𝑥1 + 𝛥𝑥2 + ⋯ + 𝛥𝑥𝑁)2 + (𝛥𝑦1 + 𝛥𝑦2 + ⋯ +

𝛥𝑦𝑁)2

Because the particle is in random motion, each movement

position is equally likely to occur. The average radial

distance after many steps will be where the root mean

square of the step size (𝑟𝑟𝑚𝑠) [5] is (6):

𝑅𝑟𝑚𝑠 ≈ √𝑁𝑟𝑟𝑚𝑠

And after a huge number of steps, the point is more likely

to be at the origin position. Two dimensions random

walks are present in our daily life as the diffusion of

particles in space. Figure 7 shows a two-dimension

random walk after 100 steps.

(3)

(4)

Figure 6: Random walk in one dimension

(5)

(6)

Figure 7: An example of a 2D random walk

(8)

vi. Real World Applications of Random Walks

(Brownian Motion)

Brownian Motion is the random movement of

particles inside a fluid. It gets its name from the Scottish

botanist Robert Brown. He observed pollen grains under

the microscope and said that the particles displayed rapid

and irregular movement that seemed to be continuous.

Albert Einstein and Marian Smoluchowski further

developed Brownian Motion. Einstein was the first to

realize that due to collisions with molecules, particles

should move with kinetic energy equal to 𝑘𝐵𝑇 ∕ 2 (where

𝑘𝐵 is the Bolzmann constant and 𝑇 is the fluid

temperature).

Smoluchowski, on the other hand, used kinetic theory to

perform calculations. He stated that one collision alone

would not be sufficient to generate movement, but the

number of collisions is large and can create motion.

Smoluchowski realized that there will always be

unbalance due to fluctuations in the order of the square

root of the number of collisions, thus creating motion.

The other part of Einstein’s theory was a result of Stokes

law for the frictional force exerted on a body moving in a

liquid: a spherical body of radius a moving with velocity

v in a fluid of viscosity η is slowed down by a force given

by −6𝜋𝜂𝑎𝑣.

Einstein formulated that the particle performs irregular

motion, very similar to a random walk. It is characterized

by the square displacement [𝛥𝑥(𝑡) = |𝑥(𝑡) − 𝑥(0)|2]

(where 𝑥(𝑡) is the position of particle at time t)] of the

particle as it grows on linearly in time [6]:

⟨|𝛥𝑥(𝑡)|⟩ ≈ 6𝐷𝑡

Equation (2.4a) is Einstein- Smoluchowski law of

diffusion, and to derive the diffusion coefficient D, using

Stokes law and energy equipartition equation (8)

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑎𝑣

To connect the ideas of a random walk and

Brownian motion, the Wiener process is used. Although

this is strictly speaking a confusion of a model with the

reality being modeled, the Wiener process is occasionally

referred to as "Brownian motion". The Wiener process is

the scaling limit of a random walk; if there is a random

walk with a very small step size, there a Wiener process

can be approximated. If the step size is ε, for example, to

approximate a Wiener length of L, a walk of length 𝐿/

𝜀2 is taken. The random walk turns into a Wiener process

as the number of steps rises. This step is made to simulate

the random movement of particles as the step size gets

decreased to a small step size. It is controlled by the

central limit theorem. Central limit theorem is that the

sampling distribution of the mean will always be normally

distributed, if the sample size is large enough.

Brownian motion can be observed in multiple parts of

daily life. Gas molecules represent Brownian motion.

Moreover, the motion of pollen grains in still water.

III. Methodology

i. Libraries

Built-in libraries of Python were used to facilitate the

writing process of building and constructing the

algorithms. To begin, the math library was used to

implement mathematical values like math.pi and

math.cos() were used. Secondly, the random library

was used to implement the random factors in the

random walk like random.seed() and random.choice()

were used. “random.choice” is a built-in random

module that chooses between the given arguments.

The matplotlib.pyplot was used as a way to visualize

the results in graph form in one dimension and in two

dimensions. Moreover, the numpy library was used to

add more mathematical functions like sqrt().

ii. Pascal’s Triangle Algorithm

A function named “pascal triangle” was built that takes

an argument “n” generating the nth row of Pascal’s

triangle. First, it initializes the current row to be (1),

the first row of Pascal’s triangle. Then, for each

subsequent row, it creates a new list “next_row” and

sets the first element to (1).

Figure 8 shows the key snippet that codes for Pascal’s

triangle. The first line creates a loop that iterates over

each index “I” in ‘current_row’ list, except the last

index. “len(current_row) – 1” gives out the number of

(7)

(8)

elements inside the list minus the last element, as the

last element is one. The term inside the for loop is the

main part of the code, and it appends the sum of the

current element “current_row[i]” and the next element

“current_row [i + 1]” to the next_row list. Moreover, it

sets ‘current_row’ to ‘next_row’ to generate the

following row in the triangle. Lastly, it repeats until it

reaches the nth row of the triangle.

for i in range(len(current_row) - 1):

next_row.append(current_row[i] +

current_row[i + 1])

To code for the probability inside the triangle, a

dictionary was initialized to store the values of the

probabilities. They were computed by taking each

value in the “current_row” list and dividing it by 2𝑛 .

Then, each probability gets added to the “random_dict”

dictionary as shown in figure 9.

 random_dict = {}

 for value in current_row:

 prob_2d = value / 2**n

 random_dict[value] = [prob_2d]

 random_dict[value, y] =

random_dict.pop(value)

 y -= 2

Tying the random walk placement to Pascal’s triangle

was done by adding a key value in the dictionary that

contained the probability values. This was done by

making a new variable called y that starts by having

the same value as the number of steps taken, after that

it is decremented by a value of two, then it creates a

new key-value pair were each probability has two

keys, one being the value inside pascal’s triangle and

the other key is the position after a set number of

steps. For instance, after 4 steps, the ‘random_dict”

dictionary has values of “{(1, 4): [0.0625], (4, 2): [0.25],

(6, 0): [0.375], (4, -2): [0.25], (1, -4): [0.0625]}” where

the first element in the tuple is the value in the pascal’s

triangle in pascal’s triangle, and the second element in

the tuple is the possible End Points After N Steps.

iii. Random Walk In One Dimension Algorithm

A function named “random_walk_1d” was constructed

to simulate the random walk. It takes two arguments:

“start” which initializes the position of the walk, and

“n”, which is the length of the step. Firstly,

random.seed() was used to ensure that each time the

function gets called, the number generated is different.

The “current” variable gets assigned the “start”

variable to initialize the starting position. After that, a

list “steps” gets initialized that stores the steps taken

by the program.

Figure 10 shows the loop that iterates “n” times,

generating a random step and updating the position of

the random walk. “random.choice([-1, 1])” is the two

possible outcomes of the walk, either going to the left

or to the right. After the choice is made, the current

position gets updated by adding the random step to

the current position and appending it to the steps list.

for i in range(n):

 step = random.choice([-1, 1])

 current += step

 steps.append(current)

To calculate the probabilities of the random walk,

‘num_trials’ is specified, which signifies the number of

times the random walk would be executed. The

starting position ‘start’ gets assigned the value zero to

indicate starting at the origin. After that, it records the

final position of the particle after each trial and keeps

track of the frequency of each final position in a

dictionary called ‘end_points_freq_dict’.

A for loop gets initiated that runs the walk a specified

number of times, (set to 1000 as a baseline) and

records the final position of the particle after each trial
inside the end_points_freq_dict dictionary. To calculate

Figure 8: Getting the values of Pascal's triangle

Figure 9: getting the probabilities in pascal's triangle

Figure 10: Random walk in one-dimension code

the probability of each final position, the frequency of

each position is divided by the ‘total_trials’. The

resulting probability is then stored in a new dictionary

called ‘end_points_prob_dict”as shown in figure 11.

start = 0

num_steps = int(input("Enter the number

of steps: "))

num_trials = 10000

end_points_freq_dict = {}

for i in range(num_trials):

 steps = random_walk_1d(start,

num_steps)

 end_point = steps[-1]

 end_points_freq_dict[end_point] =

end_points_freq_dict.get(end_point, 0)

+ 1

total_trials = num_trials

end_points_prob_dict = {}

for point in end_points_freq_dict:

 end_points_prob_dict[point] =

end_points_freq_dict[point] /

total_trials

To add the uncertainty (standard error) to the graph,

using the formula

√𝜌 × (1 − 𝑝)/𝑛

Where p is the probability of ending at a point, (1-p) is

the probability of the complementary event, and n is

the total number of trials. The standard error is a
measurement of the deviation between the sample

mean and the actual population mean. This was

calculated to see the range of error that the probability

gets to measure. The probability values are first

extracted by the code using the "values ()" method

from a dictionary called "end_points_prob_dict," and

then they are transformed into a list using the "list ()"

function. The variable "probs" holds the resulting list

of probabilities.

The standard error is then calculated for each

probability value in the probs list using a list

comprehension as shown in figure 12. The square root

of each probability value p is calculated using the sqrt

() function from the NumPy library. The list ‘stderrs'

contains the resulting standard errors.

probs =

list(end_points_prob_dict.values())

stderrs = [np.sqrt(p * (1 - p) /

total_trials) for p in probs]

iv. Pascal’s Pyramid Algorithm

The code for Pascal’s pyramid was taken from

bodyshots on Git Hub [7] with changes to fit the model.

The code has two classes. The first class

“Pascal3DElem” codes for the element inside Pascal’s

pyramid, which is a number. The second class

“PascalPyramid” codes for Pascal’s pyramid itself.

“PascalPyramid” has three methods, each one codes

for a part to generate the pyramid.

The first method “__init__” initializes the layer’s

attribute of the pyramid, which is a list of

“Pascal3DElem” objects representing the pyramid. It

takes an argument that signifies the layer to

generate the layers included in the pyramid. It

uses a loop to generate each layer of the pyramid,

starting from layer “0”, which is (1). After that, the

loop calls the get_next_layer method to generate each

subsequent layer of the pyramid.

The second method, “get_next_layer,” generates

the next layer of the pyramid by being given the

previous layer; it takes ‘prev_layer’, which represents

the previous layer of the pyramid. The method creates

an empty list called ‘next_layer’ to contain the next

layer of the pyramid. Moreover, a loop is used to

generate each row of the next layer, starting with the

top row, creating a list of Pascal3DElem objects for

Figure 11: Calculating the probabilities inside the random walk

(9)

Figure 12: Standard error in the random walk

each row, with the length of the list equal to the row

number plus one. Furthermore, the method uses

another loop to calculate the value of each element in

the next layer based on the values of the elements in

the previous layer. For each element in the previous

layer, the method adds the value to the values of the

elements that are above, below, and right next to it in

the next layer, generating the next layer of the

pyramid. Figure 13 shows the method in detail.

def get_next_layer(self, prev_layer):

 next_layer = []

 for i in

range(len(prev_layer[0]) + 1, 0, -1):

 next_layer.append([Pascal3D

Elem() for _ in range(i)])

 for row_num in

range(len(prev_layer)):

 for entry_index in

range(len(prev_layer[row_num])):

 curr_elem =

prev_layer[row_num][entry_index].elem

 next_layer[row_num][ent

ry_index].elem += curr_elem

 next_layer[row_num][ent

ry_index + 1].elem += curr_elem

 next_layer[row_num +

1][entry_index].elem += curr_elem

 return next_layer

The last method, “probability_pyramid,” is
used to create the probability of ending at a point

inside the pyramid. It takes the last layer of the

pyramid, then generates a list of values of all elements

in the last layer. It creates an empty dictionary to store

the values. Moreover, it uses a loop to iterate over the

list of elements, and for each element, it divides the

element by 3𝑛, where the n represents the number of

layers in the pyramid. It takes this value and add it to

the “prop_3d” dictionary with the key being the

original value and the value is the probability as

shown in figure 14.

def probability_pyramid(self):

 last_layer = self.layers[-1]

 elements = [elem.elem for row in

last_layer for elem in row]

 global prob_3d

 prob_3d = {}

 y=1

 for elem in elements:

 divide_3d= elem / (3**x)

 prob_3d[elem] = [divide_3d]

 y += 1

 return elements , prob_3d

v. Random Walk in Two Dimensions

A “random_walk_2d” function was created to generate

a random walk starting from the origin and having to

move between three possible steps. The steps were

designed to align with the values of the pyramid, as the

pyramid has three faces.

The function takes two arguments, ‘start’, a tuple to

indicate the starting position, and ‘num_steps’, an

integer specifying the number of steps to take. A loop

is initiated that takes ‘num_steps’, where in each step,

the function generates a random step size. The

direction gets assigned by calling ‘random.choice()’,

where it contains three tuples representing the

direction of the step. The steps can have three

directions, and the angle between each step is 120

degrees. This was made by using trigonometry and

making the directions (sin 30, cos 30), (1,0), and (-sin

30, -cos 30). Then, the function updates the current

position by adding the step size and direction to the x
and y coordinates in position. They were then

Figure 13: Generating the next layer of pascal's pyramid

Figure 14: Getting the probability in Pascal’s pyramid

separated to ease graphing of the position as shown in

figure 15.

for i in range(num_steps):

 step =

random.choice([(0.5,math.cos(math.pi /

6)) ,(1,0),(-0.5,-math.cos(math.pi /

6))])

 position[0] += step[0]

 position[1] += step[1]

 steps.append(tuple(position))

 x_positions.append(position[0])

 y_positions.append(position[1])

Similar to how the probabilities were calculated in the

one-dimensional random walk, the probability of the

two-dimensional random walk is constructed. The

‘start’, instead of being an integer, is now a list

consisting of two zeros to indicate the origin point.

Since the directions set have decimal points, the final

position of the particle is rounded to 5 decimal places

and stored as a tuple in the “end_point” variable before

being added to the “end_points_freq_dict” dictionary.

This makes sure that there are no random errors or

duplicates at the same point as shown in figure 16.

start = [0, 0]

num_steps = int(input("Enter the number

of steps: "))

num_trials = 1000

end_points_freq_dict = {}

for i in range(num_trials):

 steps, x_positions, y_positions =

random_walk_2d(start, num_steps)

 end_point = tuple(round(coord, 5)

for coord in steps[-1])

 end_points_freq_dict[end_point] =

end_points_freq_dict.get(end_point, 0)

+ 1

total_trials = num_trials

end_points_prob_dict = {}

for point in end_points_freq_dict:

 end_points_prob_dict[point] =

end_points_freq_dict[point] /

total_trials

vi. Testing the Models

After building the models, they were subjected to

visualization to see the relation between random

walks in one and two dimensions and Pascal’s triangle

and Pascal’s pyramid, to see if it can predict the

probability of ending at a point in the random walk

based on the values inside of the structure.

The random walk was simulated a thousand times,

and then ten thousand times, in both the one-

dimensional random walk and the two-dimensional

random walk. The standard error (𝑝^) of the

probabilities given by the random walk was given by

the equation (10) where p is the frequency of ending

at the point and n is the total trials given.

𝑝^ = √𝑝(1 − 𝑝) ∕ 𝑛

For the two-dimensional random walk, error bars

were added to the graph representing the uncertainty

in the estimated of the probabilities of ending at each

point. They indicate the standard deviation of the

estimated probabilities, which is a measure of how

spread out the estimates are around their mean, that’s

why the standard deviation and mean was calculated.

The standard deviation was calculated by Bernoulli

distribution, which aligns with equation (3.6). This

formula assumes that the probability estimates are

independent and identically distributed, which is a

Figure 15: Random walk in two dimensions

Figure 16: Calculating the probability in two dimensions

(10)

reasonable assumption in this case since each trial is

independent and the endpoint probabilities are

estimated using the same number of trials figure 17.

x_means = np.array([point[0] for point

in end_points_prob_dict.keys()])

y_means = np.array([point[1] for point

in end_points_prob_dict.keys()])

x_stdevs = np.array([np.sqrt(prob * (1

- prob) / total_trials) for prob in

end_points_prob_dict.values()])

IV. Results and Discussion

i. Pascal’s triangle and one-dimensional

random walk

There is a set relation between Pascal’s triangle and a

one-dimensional random walk where the probability

of ending at any point after n steps corresponds to the

values in the triangle over their sum.

𝑣 =
1

2𝑛

The numbers were then compared to Pascal’s triangle

probability numbers v and it showed that by
increasing the number of trials, the numbers

approached the values given out by Pascal’s triangle.

This is apparent in Figure 18, where in (a) the

probabilities don’t align as well as in (b). This shows

that Pascal’s triangle shows the probability of landing

at each point accurately. Looking at the graph, a

pattern emerges where the smallest number is

pascal’s triangle, which is (one) corresponds to the

farthest point from the origin.

Figure 18: One-dimensional random walk after 10 steps

An observation can be made were the middle values

inside of the triangle are nearest to the origin.

Furthermore, in rows where there is an odd number

of elements in the row, the middle element

corresponds to the highest probability which is

returning to the origin.

ii. Pascal’s Pyramid and Two-Dimensional

Random Walk

In two dimensions, similar observations can be made

with Pascal’s Triangle and the one-dimensional

random walk. To begin with, the probabilities of

ending at any point in the walk showed like the values

given out by the pyramid given by the formula, where

v is the probabilities given out by the pyramid.

𝑣 =
1

3𝑛

Like the one-dimensional walk, the probabilities

whenever the number of trials increases, the

probability of ending at points closely resembled

those of pascal’s pyramid.

Figure 17: Standard Deviation calculated in the graph

(11)

(a). After a thousand trials

(b). After ten thousand trials

(12)

(a) After a thousand trials

The values in each row in the probabilities correspond

to a row inside of the layer in pascal’s pyramid. As it is

clear in figure 19, the topmost points in the graph

correspond to the top most row in pascal’s pyramid

layer. Each layer is computed where the layer number

is the number of steps taken.

The closer to the origin, the higher the probability to

end at it. The values in a layer inside of the pyramid

has its higher values in the middle of the layer. This

corresponds to the results given.

V. Conclusion

Pascal’s triangle is one of the fascinating subjects

taught in mathematics, it has usages in combinatorics

and algebra. This paper proved that there is another

way that pascal’s triangle and other structures in

higher dimensions like pascal’s pyramid can be used

to predict the probability of ending at a point inside

random walks in one dimension and two dimensions.

The purpose of this study was to see if pascal’s triangle

and higher dimensional structures like pascal’s

triangle can model high dimensional random walks.

This relation was set after building the probability

inside of the structure by putting the numerator as the

value inside of the structure and the denominator is

the sum of the layer or row inside of the structure.

VI. Referencs

[1]E. W. Weisstein, "Pascal's triangle," MathWorld, 2002.

[Online].Available:

https://mathworld.wolfram.com/PascalsTriangle.html.

[2]J. F. Putz, "The Pascal polytope: An extension of Pascal's

triangle to N dimensions," The College Mathematics

Journal, vol. 17, no. 2, pp. 144-155, 1986.

[3]J. H. Staib and L. H. Staib, "The Pascal Pyramid,"

Mathematics Teacher: Learning and Teaching PK–12,

vol. 71, no. 6, pp. 505–510, 1978.

[4]R. H. Landau, M. J. Páez and C. C. Bordeianu, "Computational

Physics: Problem Solving with Python," John Wiley &

Sons, pp. 69-84, 2015.

[5]E. W. Weisstein, "RandomWalk1-Dimensional," MathWorld,

2002. [Online]. Available:

https://mathworld.wolfram.com/RandomWalk1-

Dimensional.html.

[6]M. Cencini et al., "Statistical Mechanics," in A Random Walk

in Physics, Springer, Cham, 2021.

[7]Bodyshots, "Pascal [Source Code]," GitHub, 2022. [Online].

Available:

https://github.com/Bodyshots/pascal/blob/main/Pascal3

D/pascal_3d.py.

(b) After ten thousand

trials
Figure 19: Two-dimensional random walk probability

