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Abstract 

     This paper gives an overview of the advancements in Artificial intelligence (AI) 

for the prognosis and treatment of cardiovascular disease (CVDs). AI techniques, 

inclusive of machine learning algorithms, have proven promise in analyzing 

medical photos for computerized detection of cardiac abnormalities and risk 

stratification. Decision-guide systems driven by way of AI useful resources in 

optimizing remedy strategies via leveraging patient facts for personalized 

interventions. Integration of AI with wearable devices and faraway monitoring 

structures allows real-time facts collection, early detection of cardiac activities, 

and powerful remote care control. However, demanding situations associated with 

information privateness, set of rules bias, and regulatory frameworks need to be 

addressed. Collaborative efforts amongst clinicians, researchers, and 

policymakers are crucial for harnessing the whole capacity of AI in CVD care. 

 

I. Introduction 

According to the World Health Organization, 

cardiovascular disease (CVD) is the most prevalent 

mortality determinant in the world, taking an 

estimated 17.9 million lives each year, which is 

approximately one-third of global mortality [1, 2, 3]. 

It is expected to account for more than 23.6 million 

deaths annually by 2030 [4]. More than four out of 

five CVD deaths are due to heart attacks and strokes, 

and one-third of these deaths occur prematurely in 

people under 70 years of age [1]. CVDs have become 

a major health issue negatively affecting the 

economic and social development of the whole world 

[4]. Cardiovascular disorders are considered to be 

serious health issues. Although there are various 

kinds of cardiac illnesses, heart diseases are the most 

common [5]. In the last ten years, traditional 

medication and surgery have been able to lessen the 

mortality rate and symptoms associated with CVDs; 

however, there is still a deficiency in clinical 

strategies for either repairing the damaged 

myocardium following myocardial infarction (MI) or 

averting the potentially fatal development of heart 

failure (HF). Conventional medicine is less intrusive 

but may harm organs or have other detrimental side 

effects. [4].  

 

The early detection of cardiovascular diseases is 

one of the greatest difficulties facing physicians. 

This is due to several factors that affect health such 



 

as high blood pressure, increased cholesterol, 

abnormal pulse rate, and many other factors [5]. 

Therefore, utilizing and developing AI methods in 

the diagnosis of CVDs is crucial, as it can analyze the 

factors and predict the possibility of the disease, and 

increase the accuracy of the detection to more than 

80% [5].  

 

Machine learning techniques in the medical field 

have been expanding widely in recent years. The 

main idea of utilizing machine learning is to develop 

systems that can predict based on experience and 

stored data [5]. Some great examples of utilizing 

machine learning in the medical field include 

predicting and treating disease, providing medical 

imaging and diagnostics, discovering and developing 

new drugs, and organizing medical records. Deep 

learning is a subset of machine learning, where deep 

learning structures algorithms in layers to form an 

artificial neural network that can learn and make 

decisions on its own. The majority of artificial 

intelligence (AI) in our daily lives is powered by 

deep learning in one way or another. The difference 

between deep learning and machine learning is as 

follows: deep learning is capable of ingesting 

unstructured data in its unprocessed form (text, 

photos, etc.) and automatically identifying the set of 

characteristics that differentiate various data 

categories from each other, while machine learning 

relies more on human input to acquire knowledge 

[5]. The set of attributes that human experts need to 

distinguish between different data inputs is 

determined; often, this requires more structured data 

to learn. 

 

A neural network with three or more layers is, by 

definition, a deep neural network, or DNN. Most 

DNNs actually have a lot more layers in practice. To 

identify and categorize occurrences, detect patterns 

and relationships, assess possibilities, and make 

predictions and judgments, DNNs are trained on vast 

volumes of data. A deep neural network has many 

layers that help improve and optimize the predictions 

and judgments made by a single-layer neural 

network, resulting in predictions and decisions that 

are more accurate. It is now possible to detect brain 

tumors using a type of DNN, with accuracy 

significantly lower than before. Furthermore, deep 

neural networks had a significant transformative 

effect on electrocardiogram (ECG) analysis. This 

paper comprises deep neural network techniques 

used in analyzing ECG signals for the prediction of 

CVDs, how it is done, and the effectiveness of using 

convolutional neural networks in ECG analysis.  

  

Chapter Ⅱ provides information about AI 

applications in cardiovascular diseases, a brief 

explanation of ECG signals, and deep neural network 

models. Chapter Ⅲ comprises an explanation of the 

structure and mechanism of convolutional neural 

networks, while chapter Ⅳ discusses new 

technologies used in CVD diagnosis and AI 

outperforming prediction. 

 

 

II. AI and Electrocardiograms 

 

i. The potential of utilizing AI in CVD diagnosis 

     Digital healthcare encompasses the provision of 

tailored health and medical services, the utilization 

of electronic devices, systems, and platforms, as well 

as the integration of a wide range of medical services 

[6, 7]. By connecting healthcare with ICT 

(Information and Communication Technology), it 

can help to prevent, diagnose, treat, and manage 

diseases [7, 8]. The rapid advancement of Artificial 

Intelligence (AI) technologies has enabled healthcare 

professionals to increase their ability to process the 

vast amount of data generated through wearable 

devices used in the monitoring of patients' health [9]. 

    This section provides an overview of the existing 

literature on the utilization of Artificial Intelligence 

(AI) to analyze wearable sensor data to predict and 

diagnose cardiovascular disease. 

Wear-able devices  

 

     The utilization of wearable devices in the health 

sector is advancing rapidly, particularly in the areas 

of telemedicine, patient tracking, and mobile health 

systems. The utilization of these devices for remote 



 

monitoring and diagnostics of common 

cardiovascular diseases has been the subject of 

research [10]. Examining the potential and 

challenges of wearables [11, 12], specific barriers 

and knowledge gaps (HR and activity tracking) have 

been identified in the field of clinical cardiovascular 

healthcare wearables. The utilization of Artificial 

Intelligence (AI) and recent cutting-edge 

technologies has been extensively examined in all 

areas of Arrhythmia Care [9]. The Department of 

Drug Development (DL) has been a pioneering field 

of research for many years, and this paper provides 

an overview of the challenges and potential of this 

field in cardiovascular medicine [9]. End-to-end DL 

can also be used for resting ECG signal analysis to 

identify structural cardiac abnormalities, which can 

then be used to effectively screen symptomized 

populations [9]. Talking about risk prediction models 

in CVD, the biomarkers can be used for early 

detection of the disease as well as risk predictions 

[13]. 

 

Risk Prediction Models 

     A risk prediction model is a statistical regression 

model that relates the disease outcome with the 

characteristics of an individual. Risk prediction 

models are commonly referred to as risk 

stratification models or prognostic models. A risk 

prediction model typically includes multiple risk 

factors (or predictors) that are significantly related to 

the disease outcome. The association of a risk factor 

with the outcome of the disease is assessed based on 

the relative risk associated with that risk in the 

population, rather than in a single individual. A risk 

score may be calculated from a Risk prediction 

model for each individual, with a higher risk score 

indicating an increased risk of the disease. The risk 

score can be used to classify individuals into groups 

with different levels of risk of the disease. People in 

the high-risk groups are targeted for intervention 

strategies [14]. Discrimination refers to the ability of 

a risk prediction model to separate those who do and 

do not have the disease of interest [15]. This method 

is used to measure the likelihood of a risk prediction 

model assigning a higher risk score to a random 

sample of individuals who are expected to develop a 

disease within a specified time frame than to those who 

are not expected to develop the disease within that time 

frame. It was initially developed to assess the accuracy of 

classification in distinguishing signals from background 

noise in radar detection [14, 15]. A model with perfect 

discrimination will give higher predicted risk scores for 

all cases than for non-cases even if the predicted risk score 

does not match the observed risk. 

 

ii. Electrocardiograms: properties and advantages. 

     Before delving into Electrocardiograms and their 

properties, a basic understanding of the heart must be 

achieved. The human heart operates mostly by 

intrinsic electric impulses. These impulses first arise 

in the sinoatrial (SA) node, located at the top of the 

heart's upper-right chamber (the right atrium), which 

is also known as the heart's “natural pacemaker.” 

These impulses flow through the heart through a 

process known as conduction where the impulses 

travel to the ventricles causing their contraction in a 

phenomenon known as ventricular contraction. This 

contraction is considered a representation of one 

heartbeat. In normal cases with no abnormalities, this 

rhythm is recorded as a sinus rhythm and is 

considered the basic rhythm of the heart.  

     This previously mentioned electrical activity can 

be recorded via a device known as an 

electrocardiogram. This device mainly records the 

starting point of these impulses and their conduction 

through the heart. An ECG is mainly administered to 

patients suffering from symptoms of CVDs such as 

blackouts or strokes as they're usually caused by an 

irregular heart rhythm. Electrocardiograms have 

various types depending on the condition that's being 

checked for. The most important types are the stress 

test, which monitors the heart during exercise to 

detect CVDs such as coronary artery disease; the 

Holter monitor, which monitors for longer periods; 

and the resting 12-lead ECG, which is used in a 

resting state and is considered the optimal type of 

ECGs. To record an ECG, electrodes must be 

inserted in the limps and chest to record different 



 

views of the heart. These views are called leads and 

the number of leads is not equal to the number of 

electrodes. For a full picture of the heart, a 12-lead 

ECG is optimal which is why 12-lead ECG tests are 

preferred. 

     To interpret the reading of an ECG, some basics 

must be understood. The ECG visualizes each 

ventricular contraction (heartbeat) by one ECG 

complex as shown in figure 1. 

      

 

      

     There are 5 main points in an ECG complex those 

being "P", "Q", "R", "S", and "T". The "P" wave 

shown here is a representation of the electrical 

activation of arterial muscle. The PR interval is the 

amount of time needed for the impulse to travel from 

the artery to the ventricle. The QRS complex 

symbolizes the spread of the impulse causing 

ventricular contraction. The ST interval showcases 

the full activation of the ventricles, while the "T" 

wave shows the return of the ventricles to a resting 

electrical state. Without any abnormalities, a normal 

beat should be a succession of one P wave, a QRS 

complex, and finally a T wave. The way those waves 

and intervals are displayed can tell a lot about the 

condition of the heart. For example, if the QRS 

complexes are compressed together, this indicates a 

higher heart rate. They can also indicate the rhythm 

of the heart based on how consistent QRS complexes 

are. Ideally, the reading of a healthy heart via ECG 

should look like figure 2.  

 

     The professionals reading an ECG recognize 

certain patterns and rhythms that indicate different 

CVDs. For example, figure 3 shows a rhythm that 

indicates a complete heart block while figure 4 shows 

a pattern indicating acute ischemia [15, 16]. 

 

iii. Types of deep-learning models 

used in ECG analysis. 

 

Deep learning (DL) is a class of machine 

learning that performs much better on unorganized 

Figure 1: illustrating the ECG complex for a heartbeat 

Figure 3: shows a complete heart block 

Figure 2: illustrates a healthy heart rhythm 

Figure 4: acute ischemia with T wave inversion 



 

or huge data with increased high-performance 

computing, which made it more popular at present. It 

focuses on creating and training complex neural 

networks to learn and make intelligent decisions 

from large volumes of data. Deep learning is called 

“deep” as it passes the data through numerous layers, 

where each layer can gradually extract features and 

pass the data to the next layer. The first layers extract 

low-level features, and the later layers combine 

features to create a comprehensive representation. 

Deep learning models are built using artificial neural 

networks, which are computational structures 

inspired by the organization of neurons in the human 

brain. These networks consist of layers of 

interconnected nodes (neurons) that process and 

transform data. Nowadays, deep learning is used in a 

lot  many applications such as Google’s voice and 

image recognition, Netflix and Amazon’s 

recommendation engines, Apple’s Siri, automatic 

email and text replies, and chatbots [18]. 

Deep neural network models had a 

transformative impact on analyzing 

electrocardiograms. It led to many significant 

advancements such as improved accuracy, where 

some studies have experimentally demonstrated that 

deep learning features are more informative than 

expert features for ECG data [19] Several deep 

Learning (DL) models have been developed to 

improve the accuracy of different learning tasks, 

including Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN), Recurrent 

Neural Network (RNN), Long Short-Term Memory 

(LSTM), and Deep Belief Network (DBN), 

Generative Adversarial Networks (GANs).  

 

• Convolutional Neural Network (CNN): 

     CNNs represent a class of deep neural networks 

(DNNs) that are widely applied for image 

classification, natural language processing, and 

signal analysis. A standard CNN is composed of 

several convolutional layers followed by a batch 

normalization layer, nonlinear activation layer, 

dropout layer, pooling layer, and classification layer 

[19]. Section Ⅲ will focus on CNNs in detail. 

 

• Recurrent Neural Network (RNN): 

It has been widely used to solve tasks of 

processing time series data, speech recognition, and 

image generation, and recently, ECG signal 

denoising and ECG classification. RNNs, including 

variants like Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU), are suitable for 

sequence data like ECGs. They can capture temporal 

dependencies and patterns in ECG waveforms, 

making them useful for tasks such as heart rate 

prediction, rhythm classification, and anomaly 

detection. A typical RNN includes an input layer, a 

hidden layer, and an output layer, where at each time 

step, the RNN receives an input, updates its hidden 

state, and makes a prediction. While RNN is highly 

suitable for short-term dependent problems, it is 

ineffective in dealing with long-term dependent 

problems. That’s why the types mentioned long 

short-term memory (LSTM) and gated recurrent unit 

(GRU) were introduced to overcome the 

shortcomings of RNN [20, 21].  

 

• Multilayer Perceptron (MLP): 

 The most popular supervised neural network, 

MLP, is successful in learning complex systems. 

Despite being variable, the MLP architecture 

consists of numerous layers of neurons coupled to 

one another in a feed-forward manner [20]. 

 

• Generative Adversarial Networks (GANs): 

This type of model consists of two sub-

models: a generative model G that captures the data 

distribution of a training dataset in a latent 

representation and a discriminative model D that 

calculates the probability that a sample generated by 

the generator comes from the true data distribution 

[21]. It can be useful in data augmentation or 

simulating abnormal conditions for training and 

testing classifiers. figure 5 illustrates the architecture 

of the GAN. 



 

 

 

• Deep Belief Network (DBN): 

    DBN is a powerful learning model used to 

model evolving random variables over time. It is 

composed of multiple Restricted Boltzmann 

Machine (RBM) layers. The function of each RBM 

in a layer is to receive the inputs of the previous 

layer and feed the RBM in the next layer [20]. 

    Figure 6 shows a brief comparison between 

DL models: 

 

III. Convolutional AI in ECG Analysis: 

I. Convolutional neural networks (CNNs) 

and their applications. 

 

     As mentioned previously, CNNs are the most 

prominent category of neural networks, especially in 

high-dimensional data like images and videos. It falls 

under the supervised learning category of neural 

networks.  CNN is a multi-layer neural network, 

which consists of multiple back-to-back layers 

connected in a feed-forward manner [20, 22]. It is 

stimulated by the neurobiology of the visual cortex, 

which contains convolutional layer(s) pursued by 

fully connected (FC) layer(s), with the probability of 

the existence of subsampling layers between these 

two layers [22]. The main layers include the 

convolutional layer, normalization layer, pooling 

layer, and fully-connected layer, as shown in figure 

7. The Three first layers are responsible for 

extracting features, while fully connected layers are 

in charge of classification. Thus, the primary 

application of CNN exists in databases, where the 

number of nodes and parameters required to be 

trained is comparatively large [22].  

Here is its structure in more detail: 

 

- Convolutional layer: 

     The convolutional layer plays a vital role in the 

operation of CNNs. It is the main building block that 

determines the output from the given input.  This 

output is achieved through a feature detector, which 

is known as a kernel. Before understanding what a 

kernel does, it should be taken into consideration that 

any digital image consists of a matrix of pixel values 

from 0 to 255 (channel), where zero corresponds to 

black color and 255 to white color. In a typical digital 

camera, an image consists of 3 of these channels, 

each one corresponding to one of the RGB colors 

(red, green, blue). A kernel is a matrix with initial 

values. When the data hits the convolutional layer, 

the layer convolves the filters over the height and 

width of the information data, and while that it 

computes the dot product between the input and filter 

Figure 5: the architecture of GAN [21] 

Figure 6: DL models comparison 

Figure 7: illustrates the architecture of CNN [20]. 



 

values of each matrix (which are the initial values of 

the kernel), therefore building a 2-D activation map 

of that filter [22, 23]. Figure 8 visualizes this process. 

“From this, the network will learn kernels that ‘fire’ 

when they see a specific feature at a given spatial 

position of the input, which is known commonly as 

activations” [23]. Each kernel will have an associated 

activation map, which will be stacked along the 

depth dimension to create the convolutional layer's 

whole output volume [23]. 

 

 

 

- Pooling layer: 

     The main aim of this layer is to reduce the 

dimensionality of the maps, by keeping the most 

important parts and discarding the rest, therefore 

decreasing the parameters, the time complexity of the 

model, and the probability of overfitting [23]. In this 

stage, each activation map in the input undergoes 

scaling its dimensionality using the “MAX” function 

by the pooling layer. Max-pooling layers are the 

most common pooling layers, where they have 

kernels of a dimensionality of 2 × 2. “This scales the 

activation map down to 25% of the original size - 

whilst maintaining the depth volume to its standard 

size” [23]. 

 

- Fully connected layer (FC): 

     The FC layer is a typical deep NN, where it 

consists of directly connected layers of neurons, with 

no other layers connected in between them [23]. In 

other words, each neuron in each layer is connected 

directly to each neuron in the two adjacent layers to 

this layer. The aim of this layer is to build predictions 

from the activations to be classified into categories 

and to associate features to each particular label. 

Figure 9 shows a simple CNN architecture. 

 

 

II. Discuss how CNNs are adapted for ECG 

analysis. 

     The analysis has three main steps: data 

preprocessing, feature extraction, and classification. 

The ECG signal is characterized by high noise and 

high complexity, therefore during the preprocessing 

stage, the signals are denoised and padded or cut into 

segments with equal sizes. In feature extraction, 

features can be extracted from the morphology of the 

ECG signal in the time and frequency domain or 

directly from the heart rhythm [24]. The time domain 

feature is the analysis of mathematical functions, 

data, and signals with respect to time, while in the 

frequency domain feature, instead of considering 

how a signal changes with time, the focus is on the 

various sinusoidal components that make up the 

signal. The spectrum frequency is found by applying 

a fast Fourier transform to the time domain signal, 

where there are some spectral features that should be 

used for CVD classification, which include the main 

frequency peak, the spectral component with 

maximal power content, and the spectral content 

below the main peak. An ECG is a 1-D signal, so it 

can be fed directly into 1-D CNN or transformed into 

an image and processed by 2-D CNN, depending on 

the specific purpose of analysis [24]. The 

convolutional filters of the convolutional layers 

extract features from the ECG signal. Convolutional 

filters slide across the signal, capturing local patterns 

such as QRS complexes and ST-segment changes. 

Max-pooling or average-pooling layers reduce the 

spatial dimensions of the feature maps, focusing on 

the most important information. Finally, fully 

connected layers are used to classify signals into 

Figure 9: CNN architecture [23]. 

Figure 8: a visual representation of a convolutional 

layer [23]. 



 

different types of heartbeats or diseases according to 

the features extracted [24]. CNNs are trained using 

labeled ECG data, where each segment is associated 

with a specific diagnosis. 

Detecting Myocardial Infarction (or heart 

attacks) using CNNs: 

     In this study, CNNs are used to detect myocardial 

infarction (MI) without relying on the detection of 

ST deviation or T peak and without extracting 

handcrafted features. Instead, it utilizes continuous 

wavelet transform and a CNN architecture to process 

the ECG data as 2D images. The ECG signal is 

divided every five seconds and normalized to the 

normal distribution. “The data segment is passed to a 

continuous wavelet transform with bior1.5 mother 

wavelet and scale from 1 to 256” [25]. This 

transforms ECG signals to be processed by the CNN 

as 2D data instead of 1D signals. This 2D data is 

mapped to RGB images with sizes 256 * 256 to serve 

as the input for the CNN [25]. The CNN architecture 

includes Two convolutional layers, two max-pooling 

layers, two ReLU activation layers, two fully 

connected layers, and a softmax layer for 

classification. The study reports a sensitivity (true 

positive rate) of 92.04% and a specificity (true 

negative rate) of 82.85% for the proposed CNN-

based method. In conclusion, the findings suggest 

that the learned features in the convolutional layers 

are promising for extracting relevant information for 

MI detection. 

 

III. Benefits of CNNs in ECG analysis 

     As already discussed above, the ECG is a 

powerful tool in the hands of cardiologists as it can 

lead them to detect premature cases based on analysis 

of the formed waves. While this is a very common 

method in ECG analysis, it can lead to a variety of 

human errors that can cost people their lives. This is 

the reason that research into CNNs, as discussed 

above, has been heavily leaned on. The exact reason 

that a deep learning AI like CNN trumps humans is 

that its interpretation heavily differs from one 

cardiologist to another. This is because humans can 

interpret the different signals and rhythms differently 

due to either different backgrounds and experiences, 

not taking sex, age, and ethnicity into account, or 

being biased towards one view before analyzing the 

test. The CNN algorithm takes all the previous into 

account as it can conclude certain phenotypes 

through a patient’s electrocardiogram reading thus 

rendering itself superior to an average cardiologist, 

or experts in some cases, as will be proven later in 

this paper [26]. 

     While it is proven that CNNs perform better than 

human cardiologists [27], what makes them stand out 

against other AI algorithms? First of all, computer-

generated analysis of ECGs had been done before by 

cardiologists, but it was severely limited in what it 

could detect because it had to be fed manual 

recognition algorithms and was bound by rules set in 

stone. This is a problem as ECGs vary greatly from 

one person to the other thus these systems couldn’t 

fully process all input information. Not only that, but 

the input fed to the system by humans gave rise to 

random and systematic errors in calculations. CNNs, 

on the other side, are fully automated and reach an 

accuracy similar to that of experts due to their ability 

to self-learn as discussed before [26]. Additionally, 

CNNs are fed tons of inputs that are labeled by 

humans. These inputs often have correlations with 

certain CVDs that have not been discovered by 

experts yet. This allows CNNs to put these pieces 

together and offer a level of analysis way higher than 

that of expert cardiologists. Lastly, the ability of 

CNNs to self-learn means that the more input, in this 

case, patients’ readings, the more it learns about 

CVD patterns thus improving its ability to detect 

premature cases [28]. 

     In an attempt to prove the practicality of CNNs in 

ECG analysis, some researchers [28], created a CNN 

algorithm and fed it with information that’s held in 

most institutions and then combined each 

institutional databank with the other to allow the 

CNN to have enough data. This data was then 

analyzed by expert cardiologists and was then 

extracted. The CNN was then fed 38 repeating 

patterns that are the most relevant in ECG diagnosis. 



 

The CNN was then tested using 38 samples of those 

same patterns and the results were as shown in figure 

10.  

 

  

     This high rate of specificity and sensitivity shows 

that CNNs are highly viable in CVD diagnosis as 

they were quite high, especially for rhythm and 

conduction diagnosis. The CNN also showed high 

AUCs (area under the curve) of at least 0.96 for 32 

out of 38 diagnoses. The system only faced 

exceptions in ectopic atrial rhythm, nonspecific 

interventricular conduction delay, prolonged QT, 

and posterior infarct [28]. 

     The CNN system also proved successful in 

detecting 2 dangerous CVDs in the form of Atrial 

fibrillation (AF) and Human Cardiac Fibroblasts 

(HCF). AF is a CVD that increases the risk of 

strokes, heart failure, and ER visits.  The danger of 

AF is only worsened by the fact that 20% of the 

affected are asymptomatic. A group of experts 

performed an experiment where they used a CNN fed 

with data from about 126,000 patients that were 

validated by experts. Patients were then tested for 

their sinus rhythm which was analyzed by the ECG. 

Any case that was flagged by CNN in the first 31 

days was considered AF positive. In the end, the 

results were a sensitivity of 79.0%, a specificity of 

79.5%, and an accuracy of 79.4% in detecting AF 

patients using the input data thus recognizing AF in 

its unrecognizable stages. The case with HCF is 

similar. HCF is a highly malignant CVD that can 

cause premature death. The problem with manual 

ECG analysis of HCF is that its readings are non-

specific and are indistinguishable from other CVDs. 

After a CNN had been fed data from 2,500 patients 

and about 50,000 control samples, the ECG was able 

to diagnose HCF using its ECG reading without the 

more commonly used methods of echocardiography 

combined with the clinical history. After being tested 

with 612 HCF patients and about 13,000 control 

samples, the CNN reached a sensitivity of 87% and 

specificity of 90% [26]. 

     While CNNs have a high advantage over 

cardiologists [27], experts, and other AI methods, 

they have their shortcomings. The first one is data 

control. Data control is essential for a CNN to 

facilitate the quality of the input data which in turn 

would affect the output data. So, feeding a CNN with 

correct, supervised, and reviewed data is essential in 

developing a CNN algorithm. The databank also has 

to be severely secure to avoid corruption of the data 

from third parties. Finally, CNNs are considered 

black boxes. Black boxes are models that are not 

100% understood by humans as they cannot pinpoint 

the methodology the CNN uses to reach its output 

thus detrimenting the ability of human assists [27]. 

 

IV. Autocardiogram necessity 

 

i. Integration with new technologies: 

body sensors, MRI, echo, and more 

     The utilization of cutting-edge technology has 

become increasingly pertinent in the treatment and 

diagnosis of cardiovascular disorders [29]. Body 

sensors are one such technology that can be used to 

monitor and measure heart and vascular health 

parameters [29]. These devices, such as 

smartwatches or wearable devices, are placed on the 

body and collect data such as heart rate, physical 

activity level, and stress levels [29]. Medical 

professionals can utilize this information to evaluate 

cardiac health and modify treatment regimens [29]. 

Magnetic Resonance Imaging (MRI) is also utilized 

for the diagnosis and monitoring of heart and 

vascular disorders [30]. Magnetic resonance imaging 

(MRI) provides a comprehensive view of the cardiac 

anatomy, enabling visualization of the internal 

organs and vessels to detect any alterations or 

anomalies [30]. This data can be utilized to create 

Figure 10: shows a sample of the results of the ECG 

CNN analysis 



 

tailored treatment plans and track patient progress 

[30]. Echography is a medical procedure that utilizes 

sound waves to generate visual representations of the 

cardiovascular system and blood vessels [31]. 

Medical professionals can visualize cardiac activity, 

assess cardiac function, and comprehend the cardiac 

anatomy [31]. Echo is also capable of determining 

the size and functionality of the heart’s atria and 

chambers, as well as diagnosing conditions such as 

coronary artery stenosis and defective heart valves 

[31]. In the field of cardiovascular disease, these 

cutting-edge technologies are utilized to enhance 

diagnosis and provide clinicians with precise 

information about patients' health conditions, 

enabling them to implement effective treatment 

plans [29]. The integration of these technologies with 

pertinent medical data is essential for providing 

cutting-edge and efficient care to patients with 

cardiovascular disease [29]. This integration is 

constantly being developed and is anticipated to lead 

to future advances in patient treatment and care [29]. 

 

ii. AI-analyzed ECGs: Accurate decision-making 

and complications prediction 

     Electrocardiogram (ECG) analysis is a way of 

assessing and tracking cardiac hobby by studying the 

electrical indicators produced in the course of cardiac 

cycles [32]. The development of generation and the 

fast advancement of Artificial Intelligence (AI) have 

enabled the usage of AI inside the interpretation of 

ECGs for the motive of creating particular selections 

and predicting complications in cardiovascular 

diseases [33]. Artificial Intelligence-primarily based 

ECG analysis makes use of the training of AI models 

primarily based on earlier affected person 

information and complicated algorithms to process 

the data and extract pertinent statistics [33]. Data are 

gathered from an extensive populace of patients with 

cardiovascular issues and evaluated via trained 

fashions [33]. These models benefit from insight 

from data and increase state-of-the-art understanding 

of styles and records that may be accrued from ECG 

recordings [33]. Artificial Intelligence-Superior 

Electrocardiography (ECG) can offer good-sized 

blessings in the treatment of cardiovascular problems 

[33]. For example, they may be applied to make 

precise diagnoses, examine capacity dangers, and 

suggest appropriate remedy courses [33]. Due to its 

capacity to manage big volumes of statistics and to 

become aware of patterns and unique traits, AI-

assisted ECG analysis can provide precise effects 

and enable healthcare professionals to make 

informed and well-timed picks [33]. In addition, the 

usage of Artificial Intelligence (AI) to analyze ECG 

facts can help in the identification of capacity 

headaches related to cardiovascular sicknesses [33]. 

The ECG statistics can then be analyzed by using 

artificial intelligence-trained fashions to stumble on 

unique characteristics and trends that propose the 

chance of complications, consisting of acute 

coronary syndromes [33]. This can facilitate timely 

diagnosis and treatment to save you headaches and 

decorate treatment effects [33]. Artificial 

Intelligence-primarily based Electrocardiograms 

(ECGs) are a first-rate step forward in the remedy 

and analysis of cardiovascular sicknesses, allowing 

clinicians to make informed choices concerning 

remedy, diagnosis, and diagnosis of capability 

complications [33]. This technology allows scientific 

professionals to enhance patient consequences and 

enhance first-rate care for those laid low with 

cardiovascular problems [33]. 

 

V. Conclusion 

     After reviewing multiple research papers and 

filling in others' gaps, the paper was able to deduce 

the validity of AI-aided ECG analysis. It was first 

concluded that autonomous analysis of an 

electrocardiogram using a deep-learning AI method 

called a convolutional neural network. This method 

proved a high success rate as it successfully 

deciphered the patterns of the ECG and their 

implications. Not only that but it was able to 

accurately detect cardiovascular disease at a higher 

success rate than cardiologists and much earlier. It 

also proved to be able to interact with IOT 

technologies such as body scanners and 

smartwatches to offer 24/7 tracking of the human 



 

heart without intrusion or discomfort and at great 

accuracy. Finally, it was able to perceive 

complications due to CVDs before their occurrence 

and prevent the advancement of the disease. While it 

is not known when this technology will be widely 

available to the public, it has without a doubt proven 

itself. Also while this tech is highly accurate and 

precise, it takes years to train the algorithms 

responsible for it, which might render it highly 

impractical until a database is established. 
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