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Abstract 

Brain-machine interface (BMI) is a novel device that allows the translation of brain 

activity like action potentials in the neurons into commands and data that can be 

processed by machines and used.   In the hope of helping neuromuscular patients with 

their severe disabilities, research has rapidly increased on BMIs in the past decade and a 

half. BMIs have been demonstrated to control robotic limbs, wheelchairs, computer 

cursors, and even allowed patients that are unable to talk to synthesize speech through 

them. In this review article, BMIs will be reviewed from its definition to the different 

types, invasive or noninvasive 

I. Introduction

Brain-Machine Interfaces (BMIs) are novel 

devices that allow the translation of brain activity in 

terms of electric activity on the cortical surface of the 

brain, allowing the user to communicate with 

machines without moving peripheral nerves and 

muscles [1].  These devices provide a novel method 

of communication and control for humans in general 

with the outside world like the ability to control 

external devices such as personal computers to play 

video games, robotic arms and wheelchairs [2] [3] 

[4]. BMIs also show strong promise for critical 

neuromuscular disorders such as amyotrophic lateral 

sclerosis (ALS), Parkinson’s disease, multiple 

sclerosis, etc. as it allows the usage of different 

neural pathways. 

BMIs are typically characterized into dependent 

and independent BMIs. Dependent BMIs don’t use 

the brain’s normal output pathways to carry the 

message, but rather depends on the activity of the 

brain to detect a certain action. For example, in a 

visual experiment, instead of trying to track eye 

movement to activate a certain machine, dependent 

BMIs can detect the visual evoked potential (VEP) 

caused by said eye movement [5]. On the other hand, 

an independent BMI does not depend in anyway on 

the normal brain pathways, but rather depend on the 

intent of a user to do an action instead of actually 

doing it [5]. Like in the same example, an 

independent BMI would detect the intention to move 

your eyes and not the actual activity of the peripheral 

nerves and muscles to move the eye [6]. Because of 

this difference, independent BMIs have proven to 

have a lot more potential in clinical applications. 

 Any BMIs, regardless of its purpose and 

application, goes through four main processes as 

shown in figure 1: signal acquisition, feature 

extraction, translation algorithm, and device output 

[42]. These four main processes allow the main 

translation of the brain signals to device output. This 

review will go through these four main processes by 

focusing on Brain-Machine Interface’s 

characterization, the different brain signals, 

explanation of the four processes, and decoders. 

II. Noninvasive and Invasive BMIs

BMIs are also divided into two types: non-

invasive and invasive. Non-invasive BMIs depend 



on electroencephalography (EEG) to detect electrical 

activity in the brain [10]. As neurons communicate 

through electric pulses in postsynaptic potentials, 

and thousands of neurons are firing per second, this 

activity is detectable through the use of small metal 

electrodes that are pasted on patients’ scalp [7] [8] 

[9]. As the detected changes in voltage due to the 

many neurons’ firing is very small, the electric pulse 

is usually amplified and then printed as a sequence 

of voltage changes over a certain brain area [9]. The 

area over which the electrodes are placed depends on 

the purpose of the EEG as for example, if examining 

the reaction to visual stimuli, electrodes are placed 

over the occipital cortex [7] [9]. 

Invasive BMIs require surgical implantation of 

electrodes in the brain, which means they require 

opening the scalp and skull and penetrating the brain 

tissue [10]. They are not preferred over non-invasive 

BMIs due to the possible risks like infection, 

especially if the implant is not entirely contained 

within the brain. Invasive BMIs are classified into 

five main types: local field potentials, single-unit 

activity, multi-unit activity, electrocorticography 

(ECoG) and calcium channel permeability [10]. 

Local field potential (LFP) is the transient 

electrical signals, which are formed from the 

combination of large neuronal populations, in the 

order of tens of thousands [11]. While singe-unit 

invasive BMI detects the activity of single neuron’s 

action potentials, the multi-unit invasive BMIs detect 

the activity of multiple neurons at the same time. For 

instance, a single-unit BMI would only decode 

specific neuronal activity in  an area like motor 

commands in M1 or cognitive signals in PP [12]. 

These methods usually employ extracellular methods 

to record and discriminate postsynaptic potentials 

generated by the hundreds of cortical neurons [12]. 

 Furthermore, the fourth type 

electrocorticography is sometimes considered a 

semi-invasive method because it requires surgical 

procedure to remove a part of the skull, but it doesn’t 

penetrate any brain tissue. ECoGs are basically EEGs 

attached to the surface of the brain itself, where a grid 

of electrodes detects the activity of the brain [13] 

[14] [15]. ECoGs could be epidural or subdural,

where the difference is that the latter’s dura mater is

left open. This allows for better accuracy and

detection as shown in [16]. They are advantageous

over normal EEG-BMIs because they have better

Figure 1 [42]: The components of the BMI operation, which includes signal acquisition, feature extraction, 

feature translation and device output. This figure further shows the potential clinical applications of these 

BMIs. 



spatial and temporal resolution [17]. Still, its 

performance and accuracy can’t still rival with 

invasive BMIs [16] [17].   Lastly, the calcium channel 

invasive BMIs (CaBMI) were developed in [18], 

where ten mice were genetically modified to express 

a calcium indicator gCaMP6f in L2/3 of both primary 

motor M1 and somatosensory (S1) cortices. Two-

photon calcium imaging were used to record activity 

in the small field of view [18]. 

III. Brain Signals Detectable by Noninvasive

BMIs 

Non-invasive BMIs detect seven types of signals: 

slow cortical potentials (SCP), sensorimotor 

rhythms, P300 event-related potential, steady-state 

visual evoked potentials, error-related negative 

evoked potentials, blood oxygenation level and 

cerebral oxygenation changes. 

i. Slow Cortical Potentials (SCP)

Slow cortical potentials are the occurrence of 

cortical polarization, which can be easily recorded 

using direct amplifiers from any location on the scalp 

[5]. They usually occur over 0.5-10.0 seconds. 

Voltage changes across the scalp can be either 

positive or negative; while BMIs detect negative 

SCPs during movement causing cortical activation, 

they detect positive SCPs which are caused by 

reduced cortical activation [19] [20].  In Birbaumer 

studies, it was shown that it is possible to control 

SCPs and even control the movement of a cursor on 

a computer screen [21]. In [22], a thought translation 

device (TTD), a non-invasive BMI, has been 

developed, where it was able to deliver basic 

communication with late-stage ALS patients in [23]. 

ii. Mu and beta rhythms

Mu and beta rhythms from somatosensory cortex 

sinusoidal frequencies in ranges 8-13 Hz that are 

detected by BMIs at the somatosensory and motor 

cortical regions [10]. These rhythms decrease in 

amplitude as movement of the body increases. 

Sensorimotor rhythms of Fp1, Fp2, F3, Fz, F4, T7, 

T8, C3, Cz, C4, Cp3, Cp4, P3, Pz, P4 and Oz were 

recorded using 16 EEG channels in [24] to control 

cursor movement in a computer screen, which 

achieved more than 50% accuracy (p-value lower 

than 0.001). 

iii. P300 event-related potential

When the somatosensory cortex gets activated 

through significant auditory, visual, or any stimuli, it 

typically evokes the non-invasive BMI over the 

parietal cortex at about 300 milliseconds [25]. Thus, 

it was named P300 event-related potential as it only 

evokes at 300 ms when any event occurs causing a 

particularly significant stimuli to the patient [5]. The 

signal of the potential increases in amplitude when 

the patient maintains greater attention to that specific 

stimuli [10]. Using P300 event-related potentials in 

[26], a paradigm has been introduced that have been 

used as a BMI spelling application in [27], [28], and 

[29].  

iv. Steady-state visual evoked potential

(SSVEP)

Steady-state visual evoked potentials are signals 

evoked from the occipital cortex during the 

occurrence of periodic presentation of visual stimuli 

of 6 hertz [10].  A survey showed that SSVEP can be 

utilized by presenting a rendered visual stimulus 

(RVS) to the user through alternating graphical 

patterns on computer screens [31]. Even more, [30] 

developed a novel independent SSVEP-BMI based 

on covert attention that helped locked-in syndrome 

patients. However, SSVEP BMIs are limited as they 

depend on attentional capacity and vision, which is 

mostly compromised in patients with more severe 

neurological diseases [5]. 

v. Error-related negative evoked potentials

(ERNP)

ERNPs occur 200-250 miliseconds after “the 

detection of an erroneous response in a continuous 

stimulus-response sequence [10].” For instance, 

when a patient is subjected to continuous visual 

stimuli and then has to pick out a certain stimuli of 

the bunch, a P300 event-related potential is evoked if 

the target stimuli is found. However, if any stimuli 

occur other than the target, then the error-related 

negative evoked potential occurs [32]. 

vi. Blood Oxygenation Level



This type of BMI doesn’t depend on EEGs but 

instead of functional MRIs. Blood oxygen level-

dependent fMRI detects the metabolic activity in the 

brain, which represent the changes in neural activity 

[10] [33] [34] [35]. BOLD was used in the past in

patients with neuropsychiatric disorders in which a

novel brain self-regulation technique that crosslinked

psychological and neurobiological approaches

through utilizing the neurofeedback of the fMRI

[37]. The results were rather promising as the

patients’ Hamilton Rating Scale for Depression

improved significantly in [37].

Real-time control of robotic arm was 

demonstrated to be possible using real-time 

functional MRI that detected the blood oxygenation 

level dependent signals from the regional cortical 

activations in the primary motor area M1 [36]. This 

allowed the movement of the robotic arm only 

through the subjects’ thought processes. 

vii. Cerebral oxygenation changes

Near Infrared spectroscopy (NIRS) is an 

spectroscopic technique that measures light 

absorbance to calculate oxy-HB and deoxy-HB, 

which provides insight of brain activity [37]. NIRS 

is characterized with high temporal resolution and 

spatial resolution. NIRS has enabled non-invasive 

measurement of the cerebral oxygenation changes 

through BMI in patients [40]. As EEG-BMI have not 

succeeded with complete locked-in state patients 

[41], metabolic brain-machine interfaces based on 

near-infrared spectroscopy has provided a novel 

method to allow the slightest communication for 

these patients. 

IV. Signal Acquisition

Signal acquisition is basically the measurement 

of the neurophysiologic state of the brain, where the 

BMI is tracking the aforementioned signals in the 

brain [42]. These signals will reflect the person’s 

intent to do a certain action, which is used to drive 

the brain-machine interfaces [1]. These signals will 

be acquired in various techniques, which include, but 

aren’t limited to, electrodes on the scalp recording 

EEG, electrodes beneath the skull and over the 

cortical surface of the brain recording 

electrocorticography, and, lastly, LFPs and neuronal 

action potentials recorded by invasive BMIs – 

microelectrodes - within the brain tissue [1]. After 

that, these signals are amplified and then digitized to 

move into signal processing [42]. 

V. Feature Extraction

The first step of signal processing is feature 

extraction, which is the extraction of main changes 

in signals that are encoding the intent of the user [42]. 

To have the highest efficiency and effectiveness, the 

extracted features should be highly coherent with the 

user’s actual intent. The digitized signals from the 

signal acquisition step are passed through certain 

procedures like spatial filtering, voltage amplitude 

measurements, spectral analysis, or single-neuron 

separation [1]. For example, the firing of a specific 

cortical neuron or the rhythmic synaptic activation in 

sensorimotor cortex, producing a mu rhythm. The 

location, size and function of this cortical area 

generating the evoked potential is essential to know 

how it should be recorded and how users will adapt 

to control its amplitude [1]. To analyze the neuronal 

signals, time domain or frequency domain analyses 

is utilized with respect to time or how much a certain 

signal is present among a given frequency band 

respectively [43]. Both the time domain, such as 

evoked potential amplitudes or neuronal firing rates, 

and frequency domain, such as mu or beta-rhythm 

amplitudes, are used to analyze the signal features in 

BMIs [1] [44] [45]. Even more, a study has shown 

that both these domain and frequency-domain signal 

features, improving performance and accuracy [46]. 

Furthermore, BMI could use other pathways like 

autoregressive parameters, which correlate with the 

user’s intent but don’t necessarily represent what is 

actually happening in the brain [1]. Finally, the signal 

is sent into the next step: translation algorithm 

VI. Decoding of brain signals

After the BMIs extract the features of the signal, 

either invasive or non-invasive, computational 

algorithms are employed to translate these neuronal 

activities for direct communication with the brain 

[17]. These algorithms, often called decoders, use 



statistical and machine-learned techniques to 

translate these signals. Decoders are especially 

utilized in BMIs that have multiple input and outputs, 

which are provided by neural recording channels 

[17]. This algorithm might use  linear methods like 

statistical analyses or nonlinear methods like neural 

networks [47]. Through this algorithm, the signal 

features are changed into commands that could be 

understood [1]. 

When a new user first uses the BMI, the 

algorithm attempts to adapt to the user’s static 

features, adjusting to the user’s feature signal like 

mu-rhythm, P300 event-related potentials and single 

cortical neuron’s firing rate [1]. However, being 

subjected to different times of day, hormonal levels, 

recent events, fatigue, illness, and other factors 

causes short-term variations in the signals detected 

from BMIs. Therefore, another level of adaption is 

always employed that reduce those instant variations. 

To further increase adaption of the algorithm, 

effective interaction between the BMI and the user’s 

brain is accommodated by engaging the adaptive 

capacities of the brain. As you train the brain by 

achieving the expected results of BMI operation, the 

brain will adapt over time and modify the output 

signal due to its plasticity, improving the operation 

of the BMI. Usually, this has been done by rewarding 

the user by any means after successful use to help 

increase plasticity’s chance to favor strengthening 

the signal. 

VII. Device Output

After signal acquisition, feature extraction and 

going through decoding algorithms, the signal is then 

passed through its final phase, which is the 

translation of that signal into an action. This action 

could be the selection of words through a computer 

screen [48], move the cursor on a computer screen as 

tested in [49], [50] and [51], neuroprosthetic control 

of wheelchairs [52] [53] and robotic limbs [54] [55] 

[56]. 

VIII. Conclusion

Full recovery for patients with motor progressive 

diseases, as of right now, is not possible, as diseases 

like amyotrophic lateral sclerosis (ALS), Parkinson’s 

disease, multiple sclerosis still don’t have viable 

treatments that can stop the progression of them [57] 

[58] [59]. Patients with severe trauma caused by

stroke, cerebral palsy, or injury to the spinal cord or

brain also have little to no full motor recovery [60]

[61]. Thus, researchers have been attempting to

develop ways to improve these patients’ quality of

life as most of these neurological conditions are

permeant.

Brain-machine interfaces hold great promise for 

being that solution for these disabling neurological 

disorders, from helping completely locked-in 

patients achieve control of computer cursors, 

wheelchairs, robotic arms [54] [55] [56], and even 

speech synthesizers [62]. Although most of these 

ideas are still early for clinical application, most of 

them hold promise but are still just lacking due to the 

limited number of electrodes – no more than 256 

electrodes - that can be used in invasive BMIs. 

However, this is all changing soon as Neuralink, a 

project started by Elon Musk, is proposing a scalable 

high-bandwith novel BMI system, that has as many 

as 3072 electrodes per array. In this ground-breaking 

project, they have also built a neurosurgical robot 

capable of inserting 192 electrodes per minute into 

patients’ brains [63]. This new BMI system will also 

house on-board amplification and digitization system 

in less than 27 x 18.5 x 2 mm3 [63]. This approach to 

BMIs has allowed an unprecedented packaging 

density and scalability and also in a small footprint 

that is clinically relevant [63].  
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