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Abstract 

Astronomy is in a data-driven era due to technological advancements in photography and machine learning. This 

study aims to show the significant contributions of machine learning and computer graphics to the field of astronomy. 

That is by investigating the process of astronomical data collection by telescopes. It goes in-depth with the steps and 

different image processing methods in both the spatial and frequency domains. This is while showing some popular 

machine learning algorithms that are used for studying and analyzing data. The study has shown the significant 

integration of computer science in astronomy, making it easier to study larger data sets. 

 

I. Introduction 

Project Galaxy Zoo is a project where 

volunteers classify galaxies according to their type. 

Eighty-seven thousand volunteers did about 5 

million classifications in the last decade. However, 

with the rapid growth of the data collected, this 

method becomes ineffective. This is when machine 

learning comes into place, solving most real-world 

problems associated with big data sets. 

Machine learning has played a major role in 

different fields in recent years. From the medical 

field, security, and military to cosmology and space. 

It is even more necessary in astronomy as 

telescopes send up to 30 TB of data per night, 

which increase even more as technology advances. 

Machine Learning is used in many aspects of 

astronomy and astrophysics. It is used in reforming 

low-quality simulations into super, higher ones. 

Furthermore, machine learning is used in the image 

processing phase to filter data captured by 

telescopes and determine whether they must be 

discarded or sorted. 

According to Chandra NASA, electromagnetic 

waves are detected through special types of 

detectors fixed to telescopes. After that, this data is 

transferred to the Earth; most of the time, data is 

then translated into greyscale images using 8-bit 

color depth. The photos are then colorized 

depending on the type of radiation captured. For 

example, infrared and ultraviolet rays are then 

translated to the closest visible light ranges. So they 

become as close to what the human eye retina 

would see as possible. Then the images are 

processed by adjusting the brightness and colors 

and removing noise from them via machine learning 

algorithms. 

II. History of Machine Learning 

In the last decades, scientists had a deep interest 

in machine learning for what it serves them. The 

18th century is considered to be the first 

contribution to machine learning. In 1763, the 

English mathematician Thomas Bayes set out the 

mathematical theorem in probability known as 

Bayes theorem; it’s the base for most of the 

machine learning algorithms and models. The start 

of the real interest in machine learning came in 

1950 by the computer scientist and mathematician 

Alan Turing. He had published a paper that was 

asking about whether a machine is intelligent or not; 

he put some questions that had to be asked to the 

machine, and it required the machine to give 

convincing answers to be considered intelligent. 

The first use of neural networks was in 1957 by the 

psychologist Frank Rosenblatt. After that, Gerald 

Dejong introduced the concept of EBL (Explanation 



 

Based Learning), in which a machine analyses data 

and conducts a general rule to follow in other 

situations; this was published in 1985. A year later, 

David Rumelhart and James McClelland published 

Parallel Distributed Processing, which advanced the 

use of neural network models for machine learning. 

The first time to introduce a new kind of machine 

learning was in 2006 when Geoffery Hinton created 

the “deep learning” term; this term had new 

algorithms and methods of learning than before, and 

machines could distinguish between texts, photos, 

and videos. [1], [10] 

III. The start of the journey, telescopes. 

     Telescopes had evolved over the course of 

history since it was first invented by Danish 

opticians in the 17th century; it was a lens only then 

an eyepiece used for magnification till they had 

been used in orbits outside the Earth. Two types of 

telescopes are used in astronomy: refracting and 

reflecting telescopes. [4] 

     Figure 2 represents a refractor. Refracting 

telescopes, also known as refractors, use lenses to 

create an image. First, light beams emitted from 

distant objects are passed through a lens that 

concentrates all the light beams at one point; this 

point is called the focal point which lies at a 

distance from the lens called the focal length. To 

have more magnification of the created photo, 

another lens was used as an eyepiece to magnify the 

photo. The ability of the refractors to collect light is 

called the light-gathering power of a lens; this can 

be calculated using the following formula:  

𝑷 ∝ 𝒅𝟐, where P is the light-gathering power, and d 

is the diameter of the lens.  

    Another aspect to be calculated is the 

magnification power of the refractor. This measures 

how much can a telescope magnify the objects in 

the sky. The magnification power can be calculated 

through this relation as shown in Figure 1:  

 

 

here M is the magnification power of a telescope. 

Another formula for the magnification power uses 

the ratio between the focal length of the objective 

lens and that of the eyepiece.  

     Refractors, which were a great invention, had 

some disadvantages which made them less used by 

scientists. One of the most severe issues was a 

chromatic aberration. This issue appears in lenses as 

they bend different colors when light is passed 

through; this is similar to what happens in a prism. 

Opticians worked in solving this problem in the 19th 

century till it was solved in the late 1800s. 

Unfortunately, many other issues had appeared in 

the lenses which made them used only by amateur 

astronomers. [4] 

     Reflecting telescopes depends on the idea of 

reflecting light using mirrors instead of using 

lenses. They’re better than refractors in weight, 

efficiency, and volume. Refractors require lenses 

with large diameters to give considerable results, 

and the larger the diameter, the thicker the lens, and 

in turn the heavier it would be. Furthermore, lenses’ 

diameters have limits and beyond them, the photos 

would be blurred. In contrast, reflecting telescopes  

Figure 2 shows components of a refactor 

Figure 3 illustrates a Newtonian telescope 

Figure 1 shows magnification power of telescope 



 

has no limits to their diameter, and they can be as 

thin as millimeters, and they would give the same 

results. 

     As seen in Figure 3, a reflecting telescope 

consists of a large mirror called the primary mirror 

to reflect light to another mirror called the 

secondary mirror which in turn reflects it to an 

eyepiece to be magnified before being seen. To get 

the best results from a reflecting telescope, a 

spherical mirror should be used with a correcting 

lens as shown in Figure 4. The correcting lens is 

used to adapt the angle by which the light rays fall 

on the primary mirror.  

     To capture the collected photos, an additional 

part is used with the telescopes; this additional part 

is the Charged-Coupled Device or the CCD. This 

part is mainly made of semiconductors in the form 

of cells, and every individual consists of pixels that 

are sensitive to photons of light. In comparison with 

normal films, CCDs respond to 70% of the light 

while films respond only to 2%.[4] These pixels 

build up electric charges according to the number of 

photons that stroke each pixel; these charges are 

translated to real photos using computers. In this 

stage, some basic image processing is done to the 

images. 

IV. But what happens to the data? 

i. Digital Images 

     To understand how images are processed, it is 

necessary to understand what digital images 

are. Digital images are the images that are sent by 

telescopes to be stored digitally. Unlike 

photographs, digital images consist of pixels. They 

are stored in memory as arrays. Each array consists 

of a header with general information about the 

image, such as its format, width, and height. 

Besides, it consists of a long row of pixels, where 

each pixel is stored as several bits. Grayscale 

images, for example, have pixels that each store 8 

bits, while colour images store 24 or 32 bits. Colour 

images are larger because they consist of more than 

one layer; they are made of 3 layers, where each 

layer is a grayscale image with pixels holding a 

value between 0 and 255. These values represent 

red, blue, or green intensity. Therefore, this format 

is called the RGB format that is based on the 

primary colors the human eyes can see. [1] 

 

a. Astronomical Data Collection 

1- Image Acquisition: 

Image acquisition is the first step into image 

processing. This procedure usually consists of data 

mapping and read/write operations. The digital data 

for the image can be loaded into computer memory 

or hard drive, which is a step generally to ensure 

that data is digitized and ready to be used. [12] 

 

2- Image Transport: 

        Astronomical data comes in large volumes. 

Thus, a standard format for these large images is 

necessary, which is why the FITS standard was 

chosen in 1979. FITS provides the type of support 

to be used for transporting images. [12] 

 

3- Image Archive: 

        Image archives have (the) essential functions 

of storing images and retrieving them. These 

functions depend on the destination of the archive, 

which could be either online/offline storage or a 

computer mass storage. In this step, images are 

stored on either of the three storage systems 

mentioned. [12] 

 

4- Image Presentation: 

     This is the process of displaying the images. It is 

a fundamental part of astronomical image 

processing, as images require visual monitoring. 

There are many different ways of image 

presentation. [12] However, they are not going to be 

covered 

Figure 4 shows correcting lens which shows the optimal results of 

reflection 



 

5- Basic Image Processing: 

     Basic image processing in astronomy includes 

standard image arithmetic, geometrical, and 

intensity mapping. It also includes sub-images 

extraction, interpolation, approximation of images, 

linear and nonlinear filtering, statistics and data 

compression. [12] 

 

V. Preprocessing 

     After storing, visualizing, and basic data 

processing, the preprocessing part starts. As shown 

in Figure 5, preprocessing happens before more 

image processing techniques are used to classify 

and detect objects, such as stars and galaxies, in the 

images. These techniques are used to either filter 

out unwanted things, or to enhance the overall 

quality of data.  [13] 

i. Image enhancement/Filtration (Spatial domain) 

1- Point processing: 

     Point processing is a spatial image processing 

technique, where each pixel/point is changed 

individually. The process is very straightforward 

and it is mathematically represented as 𝑠 = 𝑇(𝑟), 

where s is the processed pixel, r is the original pixel, 

and T is the process, filter, or effect that is applied 

to the pixel. 

2- Neighborhood processing: 

     Unlike point processing, which is concerned 

with applying different processes to each pixel 

individually, Neighborhood processing works with 

several pixels simultaneously, called a 

“neighborhood”. It is mainly in the shape of a 

square or a rectangle. 

3- Simple techniques used in astronomical spatial 

image processing: 

There are various methods and techniques used 

for image processing in the spatial domain, as 

shown in Figure 6, some of which will be covered 

in this paper. 

 

a. Histogram Equalization (HE): 

     Histogram Equalization is a common technique 

based on representing the intensity of each pixel of 

the image on a histogram. The histogram is of 

values between 0 and 1, where 0 is the least 

intensity (black) and 1 is the highest intensity 

possible (white). Histogram Equalization 

manipulates the values of the intensity of pixels 

stretching or compressing them, as shown in Figure 

7. [8,] [16] 

 

b. Brightness preserving Bi-Histogram 

Equalization: 

Figure 5 Shows the step of preprocessing in Astronomy [13] 

Figure 6 Shows methods of enhancement in the spatial domain [14] 

Figure 7 shows the effect of HE on images [16] 



 

     Histogram Equalization has one flaw that BBHE 

solves. This flaw is mean-shift, which means that 

the average brightness of an input image may 

change, causing an over-enhancement problem in 

the output image. BBHE uses the mean values of 

the image to separate the histogram, therefore 

transforming each pixel. The over-enhancement 

problem is reduced, while the mean remains 

constant, as shown in Figure 8. [8], [16] 

     The way BBHE reduces the flaw is by 

decomposing the input image into two sub-images. 

One of the images represents the set 

of samples less than or equal to the 

mean, while the other is the set of 

samples greater than the mean. The 

two images are then equalized with 

their respective histograms. [16] 

. Some different methods and 

techniques are associated with image 

de-nosing, smoothing, blurring, and 

many more; however, they are not 

going to be reviewed in this paper. 

 

1- Image enhancement/Filtration in 

frequency image processing: 

a. Fourier Transform: 

     Fourier transform is a mathematical operation 

that turns functions that are in the spatial domain 

into functions in the frequency domain. For 

example, for a periodic function 𝑓(𝑥) =

𝐴 sin(𝐵 (𝑥 + 𝐶)) + 𝐷, it is possible to represent 

this same function in the frequency domain as 

shown in Figure 9. To represent a periodic function 

in its frequency domain [14], it is represented as 

shown in Figure 10: 

 

This process is also used in digital images in 

many ways such as image analysis, image 

filtering, image enhancement, and compression. 

However, since images have two dimensions, 

Discrete Fourier Transform, which is the most 

used in digital image processing, is used. It is 

sampled, meaning it does not contain all 

frequencies forming an image. However, it 

contains a set of samples that describe the 

spatial domain image in a more general way. 

This, however, is done with a number of 

frequencies corresponding to the number of 

pixels in the spatial domain image [8], [14]. For 

example, for an image of the size 𝑀 × 𝑁, the 

two-dimensional DFT is given in Figure 11 by: 

 

What happens is that at index (k, l) there is a 

pixel, and it needs to be transformed into the 

frequency domain. However, it is necessary to 

know how this pixel relates to every other pixel 

in the image. Thus, for transforming one pixel 

of the input image, the function goes through 

every pixel, and this process is done repeatedly 

until the whole image is transformed. The input 

and transformed images can be seen as shown in 

Figure 12. This type of transform is called 

“low-pass” as it only lets low frequencies pass, 

where the low frequencies – white parts – 

represent the details on the image. 

Original image 

HBBE image 

Figure 8 shows 

input image and 

HBBE enhanced 

output 

Figure 9 shows the function f(x) in both the spatial and frequency 

domains. 

Figure 10 shows the equation representing the transform 

of spatial to frequency domain 

Figure 11 shows how an image is given by 

2-dimensional DFT 



 

 

 

 

 

2- Quaternion Algebra: 

Quaternion numbers are four-dimensional 

hyper-complex numbers that consist of a real 

(scalar) part, and 3 complex (vector) parts. They 

are represented in Cartesian form as in Figure 

13: 

 

Figure 13 shows the Cartesian form of a quaternion number 

There is a relation between its imaginary parts i, 

j, and k, as shown in Figure 14: 

 

Figure 14 shows the relation between the imaginary parts of the 

number 

The magnitude of a quaternion is defined as in 

Figure 15: 

 

When the real part of the quaternion is equal to 

zero, it is referred to as a pure quaternion; 

however, when the magnitude of the quaternion 

q is equal to 1, it is said to be a unit quaternion. 

     One last property of quaternions is that if we 

have two quaternions, p and q, as shown in 

Figure 16, it is said that: 

 

Figure 16 shows commutative property of quaternions 

Thus, in quaternion algebra, the product of two 

quaternions may or may not be commutative. 

[11], [13] 

3-  Representing color images in quaternion space: 

It is possible to represent RGB color images in 

the quaternion space as pure quaternions. This is as 

because they have three or four channels, where the 

fourth channel is usually used as padding or 

represents the transparency of the image.  

For example, let f (x, y) be an RGB image 

function as in Figure 17. Each pixel of the image 

can be represented as a pure quaternion, in which: 

 

Where 𝑓𝑅(𝑥, 𝑦), 𝑓𝐺(𝑥, 𝑦), 𝑓𝐵(𝑥, 𝑦)  represent the 

RGB components respectively. Figure 18 shows a 

representation of the RGB colors in the quaternion 

space. [6] 

One of the main reasons for using quaternions 

for representing images is that they take less space 

in the computer memory, and they make it easier to 

do computational and arithmetic operations 

compared to the representation of images as 

matrices. 

 

 

 

original image in 

spatial domain 
image represented 

in frequency domain 

Figure 12 shows image after applying DFT to it 

Figure 18 shows RGB color cube in the quaternion 

subspace Figure 15 defines the magnitude of a quaternion q 

Figure 17 representing images as pure quaternions 

(where the real part equals 0) 



 

4- 2-D Quaternion Discrete Fourier Transfer 

(QDFT): 

     Due to the unique property of quaternion 

numbers, the concept of QDFT can be defined in 

two different ways as shown in Figure 19. 

 

Again, it is going through every pixel in the 𝑁 ×  𝑁 

image; however, it cuts it into two 1-D QDFTs 

going through each row/column separately. [15] 

5- Alpha-Rooting Transform & QDFT: 

The alpha rooting method is an image 

enhancement method for gray-scale images. It can 

also be used for color images stored as quaternion 

numbers. Mixing the 2-D QDFT method with the 

alpha rooting method results in high-quality color 

images. In this method, the magnitude of the 

frequency representation of the image is 

transformed as shown in Figure 20. 

 

This transform is for each frequency point (p, s), 

where 𝛼 lies between 0 and 1. The best alpha value 

may be adjusted via trial or it could be found 

automatically. This is as shown in Figure 21 [7], 

[11], [13]. 

 

 

 

 

VI.  Machine learning and Data analysis 

     These images are analyzed, studied, and 

classified. All of which are usually done with the 

help of various machine learning algorithms. 

i. Supervised and Unsupervised learning: 

Three stages need to be completed to construct 

such a successful model. The first stage is the 

training stage, in which the hyper-parameters of the 

model are set and trained using an input set called 

the training set. The second stage is the validation 

stage; this stage is required for specifications. In 

this stage, the hyper-parameters are costumed 

according to predefined functions. Sometimes, 

different sets of inputs are used to optimize the 

hyper-parameters. Many optimizations happen to 

the hyper-parameters until reaching the best-

performing ones. The latter stage is the test stage; 

this stage is required to check the model's 

performance. In this stage, the model is exposed to 

a dataset called the test set to check whether it 

would achieve the target variables or not. Once 

these stages are finished, the model is ready to be 

used on unseen datasets. [2] 

Supervised machine learning algorithms are 

used mainly with two types of tasks in astronomy, 

classification tasks and regression tasks. 

Figure 21 shows the effect of different alpha values Figure 19 the mathematical definition of QDFT 

Figure 20 image in frequency domain with alpha rooting 



 

 In classification tasks, the model is given a dataset 

that needs to be classified into different categories. 

An example is classifying stars into "OBAFGKM" 

according to their surface temperature and 

luminosity. For the regression tasks, the target 

variables are continuous; they change as a function 

of time. An example is estimating the redshift using 

photometric measurements. 

In contrast, unsupervised machine learning 

algorithms are not constructed based on complete 

datasets but on inputs for specific parameters. 

Unsupervised machine learning algorithms are 

considered a general term for a large number of 

tools that are used in statistics. Generally, 

unsupervised models are used in explorations and 

collecting data stages, not in the specifications; they 

reveal the unseen and unnoticed objects in the 

heavens. An example of their usage is cluster 

analysis. In this analysis, the model tries to reveal 

distinct planet clusters. The analysis suggests that 

both clusters had different formation channels. [3] 

Dealing with unsupervised models has to be too 

sensitive, as these models give massive sets of 

results that must be filtered and revised before use. 

In addition, external parameters affect the model 

heavily; they result in significantly different results 

for the same dataset, making many calculations 

errors. 

ii. Semi-Supervised Learning: 

     Unlike other machine learning algorithms, semi-

supervised does not have a wide-range usage to 

date. However, this approach holds considerable 

potential to be used for the upcoming astronomical 

and photometrical surveys. A supervised machine 

learning algorithm requires datasets to be trained, 

and scientists neither use it for exploration nor for 

producing new classes. On the other hand, an 

unsupervised machine learning algorithm doesn’t 

require datasets or parameters to be used, but it 

cannot be used for specifications; it gets unexpected 

results and data and requires sensitive usage. The 

semi-supervised machine learning algorithm takes 

the best of the two previous algorithms and uses 

them. [17] A semi-Supervised machine learning 

algorithm can be used to explore and produce new 

classes based on datasets and parameters so that the 

randomness percentage is very tiny compared to an 

unsupervised machine learning algorithm.    

 

     A semi-supervised model is shown in Figure 22. 

The model shows labeled and unlabeled data 

together on the diagram. Numbers represent the 

labeled data from 1 to 4, and unlabeled data are 

represented by the U letter with a number from U1 

to U4. [17] 

Semi-Supervised machine learning algorithm 

applications in astronomy are mainly focused on the 

area of photometry and spectroscopy. It uses the 

specifications and limitations of spectroscopic 

models to extrapolate the purely unlabeled 

photometric data; this opens gates to new data in the 

photometric realm. In addition, semi-supervised 

machine learning allows collaborations and 

overlapping between scientists in Astronomy, 

Computer Science, and Statistics. [17] 

 

     Semi-Supervised machine learning algorithm has 

different approaches according to the required task. 

Some approaches may work efficiently for one task 

but poorly for other tasks. This allows overlapping 

between different fields of science to determine 

suitable approaches for specific tasks. 

 

 

 

 

 

 

 

 

 

 

 

iii. Decision Tree & Random Forest Classifiers 

Decision trees – which are shown in Figure 23 

– are a type of machine learning algorithm that is 

widely used in the field of astronomy. It is mainly 

Figure 22 Shows semi supervised model 



 

used for galaxy and star classification. The way it 

works is by attempting to classify data based on 

specific features that each data point has. It then 

starts from the “root node” comparing the data 

points to the condition at each node; it, therefore, 

classifies the data according to whether or not it 

meets the requirement. 

 

Decision trees use information theory to decide 

the next step for classification, where it calculates 

the entropy of each decision and chooses the one 

with the highest entropy [5]. For simplification 

purposes, think of it as a “Hot or Cold” game, 

where decisions that have a value closer to “Hot” 

are chosen, and decisions with values that are closer 

to “Cold” are avoided. 

Decision trees have a problem, however, which 

is that they are very sensitive to the set of data that 

they are trained on. This makes it hard for them to 

generalize what they learn. Thus, as an attempt to 

solve this problem, Random Forest classifiers were 

created. Random forest classifiers, as the name 

identifies are a group of decision trees. They work 

using two simple principles, Bootstrapping and 

Aggregation. Bootstrapping is dividing the training 

data into chunks randomly. Each of these chunks is 

then used for training a decision tree. After that, 

comes the aggregation part. The same data set is 

then given to each of these trees, and the 

classification happens with each tree giving an 

output. The outputs may differ from one tree to the 

other, thus, the choice of the majority is the one 

considered. This process is known as aggregation 

[5], [2].  

Galaxy and star classification is a process in 

which decision trees are used in. Where they are 

usually classified according to either their 

spectroscopic information – information concerning 

the wavelength range according to the 

electromagnetic spectrum – or photometric 

attributes – the total brightness as seen by a human 

eye – or both [2].  

iv. Artificial Neural Networks: 

Neural networks are techniques that were 

originally designed to simulate the human brain. 

They were not used, however, until the 1990’s 

during the 3D video games demand which 

encouraged major companies to create GPUs. 

Graphical Processing Units specialize in doing 

matrix operations; therefore, they made it possible 

for scientists to create and develop neural networks. 

 They have the ability to recognize patterns and 

learn from them. The way neural networks do that is 

by taking data 𝑥𝑑 and generate a function h(x) 

which gives an output. Due to their large potential, 

neural networks have become a point of interest in 

many different fields. 

Neural networks consist of “neurons” or 

“nodes”, which are simple processing units that are 

connected by unidirectional connections. These 

nodes are arranged in a series of layers, the first and 

last being input and output layers. That is in 

addition to “hidden layers” in the middle, as shown 

in Figure 24. The input layer acquires input that it 

Figure 24 shows the different layers of an artificial 

neural network 

Figure 23 Shows Decision trees and Random Forests 



 

distributes to the nodes of the next layer, where 

each input is given a weighted value that specifies 

how much impact this input has on the output. 

      Although Neural networks have been utilized 

for speech recognition for AIs such as Apple's Siri 

and Amazon's Alexa, they were also utilized for 

image recognition as they are sometimes called 

"Computer Vision" algorithms when dealing with 

image data [5], [9]. 

 

     Neural networks use both supervised and 

unsupervised learning methods to learn. Hybrid 

neural networks that use both methods were also 

developed. These systems were used in many 

applications and many areas of research in 

astronomy. Its main applications are object 

classification, satellite systems, and adaptive 

telescope optics. 

 

     One of the most used types of neural networks in 

astronomy is Convolutional Neural Networks 

(CNNs). They are a type of network that is made 

specifically for pattern recognition. Like other 

neural networks, CNN is made of an input layer, a 

hidden layer, and an output layer. The hidden layer, 

however, contains "convolutional layers" that can 

recognize an image's patterns. 

 

     Once the input data is given to the layer, a 

kernel/filter is added to the data. A filter is a matrix 

multiplied by each image block to produce a pixel 

in the output image. This process is done to specify 

certain parts of the image, such as edges, squares, 

corners, or circles. The more layers the network has 

the more sophisticated shapes and objects it can 

recognize. It can get as complicated as recognizing 

objects such as ears and eyes or even more 

complicated recognizing creatures such as dogs or 

cats [5]. 

 

     The way filters work is shown in Figure 

25, where the input image has four different filters. 

Each number in the filters represents a color, where 

the negative one is black, one is white, and the zero 

is gray. As the filters are multiplied by each block 

of pixels in the image, the network creates more 

recognizable shapes, such as its edges, as shown 

in Figure 26. 

  

The filters have 

different effects on the 

picture; however, they do 

the same task: showing 

the edges of the image. 

Once the filters are 

applied to the input, a 

pooling layer is used to 

reduce the data quality. 

This process is done to 

reduce the data size so it does not take as much 

memory for doing arithmetic operations as it 

usually would. After that, and after the first layers 

use simple filters to recognize edges, corners, and 

simple geometrical figures, deeper layers are used 

to recognize more complicated objects and patterns. 

[5] 

VII.  Conclusion 

For centuries, humans have always been 

concerned about studying the heavens. This 

mysterious field has been revolutionized across the 

centuries by different discoveries. Like how 

centuries ago, mathematics was used to describe 

astronomy, and physics was used to go to outer 

space, computer science is the current revolution in 

astronomy. With image processing and machine 

learning, it is possible to analyze and study large 

data sets. As for this fast development rate, we 

Figure 25 Shows image and four different filters which are 

represented as matrices 

Figure 26 Shows the effect of 

the four filters on the image. 



 

decided to review the contributions of these two 

technologies in the field of astronomy. This was 

done by going through data collection, image 

processing, and analysis methods in sequence. 

Different methods and techniques of image 

processing and machine learning used in astronomy 

were shown and explained. In the end, this all 

shows the rapid growth at which the fields of 

astronomy and computer science are advancing. 
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